Description: Definition of a II-finite set. (Contributed by Stefan O'Rear, 16-May-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | isfin2 | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ FinII ↔ ∀ 𝑦 ∈ 𝒫 𝒫 𝐴 ( ( 𝑦 ≠ ∅ ∧ [⊊] Or 𝑦 ) → ∪ 𝑦 ∈ 𝑦 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pweq | ⊢ ( 𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴 ) | |
2 | 1 | pweqd | ⊢ ( 𝑥 = 𝐴 → 𝒫 𝒫 𝑥 = 𝒫 𝒫 𝐴 ) |
3 | 2 | raleqdv | ⊢ ( 𝑥 = 𝐴 → ( ∀ 𝑦 ∈ 𝒫 𝒫 𝑥 ( ( 𝑦 ≠ ∅ ∧ [⊊] Or 𝑦 ) → ∪ 𝑦 ∈ 𝑦 ) ↔ ∀ 𝑦 ∈ 𝒫 𝒫 𝐴 ( ( 𝑦 ≠ ∅ ∧ [⊊] Or 𝑦 ) → ∪ 𝑦 ∈ 𝑦 ) ) ) |
4 | df-fin2 | ⊢ FinII = { 𝑥 ∣ ∀ 𝑦 ∈ 𝒫 𝒫 𝑥 ( ( 𝑦 ≠ ∅ ∧ [⊊] Or 𝑦 ) → ∪ 𝑦 ∈ 𝑦 ) } | |
5 | 3 4 | elab2g | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ FinII ↔ ∀ 𝑦 ∈ 𝒫 𝒫 𝐴 ( ( 𝑦 ≠ ∅ ∧ [⊊] Or 𝑦 ) → ∪ 𝑦 ∈ 𝑦 ) ) ) |