Metamath Proof Explorer


Theorem isfin2

Description: Definition of a II-finite set. (Contributed by Stefan O'Rear, 16-May-2015)

Ref Expression
Assertion isfin2 ( 𝐴𝑉 → ( 𝐴 ∈ FinII ↔ ∀ 𝑦 ∈ 𝒫 𝒫 𝐴 ( ( 𝑦 ≠ ∅ ∧ [] Or 𝑦 ) → 𝑦𝑦 ) ) )

Proof

Step Hyp Ref Expression
1 pweq ( 𝑧 = 𝑥 → 𝒫 𝑧 = 𝒫 𝑥 )
2 1 pweqd ( 𝑧 = 𝑥 → 𝒫 𝒫 𝑧 = 𝒫 𝒫 𝑥 )
3 2 raleqdv ( 𝑧 = 𝑥 → ( ∀ 𝑦 ∈ 𝒫 𝒫 𝑧 ( ( 𝑦 ≠ ∅ ∧ [] Or 𝑦 ) → 𝑦𝑦 ) ↔ ∀ 𝑦 ∈ 𝒫 𝒫 𝑥 ( ( 𝑦 ≠ ∅ ∧ [] Or 𝑦 ) → 𝑦𝑦 ) ) )
4 pweq ( 𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴 )
5 4 pweqd ( 𝑥 = 𝐴 → 𝒫 𝒫 𝑥 = 𝒫 𝒫 𝐴 )
6 5 raleqdv ( 𝑥 = 𝐴 → ( ∀ 𝑦 ∈ 𝒫 𝒫 𝑥 ( ( 𝑦 ≠ ∅ ∧ [] Or 𝑦 ) → 𝑦𝑦 ) ↔ ∀ 𝑦 ∈ 𝒫 𝒫 𝐴 ( ( 𝑦 ≠ ∅ ∧ [] Or 𝑦 ) → 𝑦𝑦 ) ) )
7 df-fin2 FinII = { 𝑧 ∣ ∀ 𝑦 ∈ 𝒫 𝒫 𝑧 ( ( 𝑦 ≠ ∅ ∧ [] Or 𝑦 ) → 𝑦𝑦 ) }
8 3 6 7 elab2gw ( 𝐴𝑉 → ( 𝐴 ∈ FinII ↔ ∀ 𝑦 ∈ 𝒫 𝒫 𝐴 ( ( 𝑦 ≠ ∅ ∧ [] Or 𝑦 ) → 𝑦𝑦 ) ) )