Metamath Proof Explorer


Theorem isfin3

Description: Definition of a III-finite set. (Contributed by Stefan O'Rear, 16-May-2015)

Ref Expression
Assertion isfin3 ( 𝐴 ∈ FinIII ↔ 𝒫 𝐴 ∈ FinIV )

Proof

Step Hyp Ref Expression
1 df-fin3 FinIII = { 𝑥 ∣ 𝒫 𝑥 ∈ FinIV }
2 1 eleq2i ( 𝐴 ∈ FinIII𝐴 ∈ { 𝑥 ∣ 𝒫 𝑥 ∈ FinIV } )
3 pwexr ( 𝒫 𝐴 ∈ FinIV𝐴 ∈ V )
4 pweq ( 𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴 )
5 4 eleq1d ( 𝑥 = 𝐴 → ( 𝒫 𝑥 ∈ FinIV ↔ 𝒫 𝐴 ∈ FinIV ) )
6 3 5 elab3 ( 𝐴 ∈ { 𝑥 ∣ 𝒫 𝑥 ∈ FinIV } ↔ 𝒫 𝐴 ∈ FinIV )
7 2 6 bitri ( 𝐴 ∈ FinIII ↔ 𝒫 𝐴 ∈ FinIV )