Description: Weakly Dedekind-infinite sets are exactly those which can be mapped onto _om . (Contributed by Stefan O'Rear, 6-Nov-2014) (Proof shortened by Mario Carneiro, 17-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isfin3-2 | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ FinIII ↔ ¬ ω ≼* 𝐴 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | isfin32i | ⊢ ( 𝐴 ∈ FinIII → ¬ ω ≼* 𝐴 ) | |
| 2 | isf33lem | ⊢ FinIII = { 𝑔 ∣ ∀ 𝑎 ∈ ( 𝒫 𝑔 ↑m ω ) ( ∀ 𝑥 ∈ ω ( 𝑎 ‘ suc 𝑥 ) ⊆ ( 𝑎 ‘ 𝑥 ) → ∩ ran 𝑎 ∈ ran 𝑎 ) } | |
| 3 | 2 | isf32lem12 | ⊢ ( 𝐴 ∈ 𝑉 → ( ¬ ω ≼* 𝐴 → 𝐴 ∈ FinIII ) ) | 
| 4 | 1 3 | impbid2 | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ FinIII ↔ ¬ ω ≼* 𝐴 ) ) |