| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isfin3 | ⊢ ( 𝐴  ∈  FinIII  ↔  𝒫  𝐴  ∈  FinIV ) | 
						
							| 2 |  | isfin4-2 | ⊢ ( 𝒫  𝐴  ∈  FinIV  →  ( 𝒫  𝐴  ∈  FinIV  ↔  ¬  ω  ≼  𝒫  𝐴 ) ) | 
						
							| 3 | 2 | ibi | ⊢ ( 𝒫  𝐴  ∈  FinIV  →  ¬  ω  ≼  𝒫  𝐴 ) | 
						
							| 4 |  | relwdom | ⊢ Rel   ≼* | 
						
							| 5 | 4 | brrelex1i | ⊢ ( ω  ≼*  𝐴  →  ω  ∈  V ) | 
						
							| 6 |  | canth2g | ⊢ ( ω  ∈  V  →  ω  ≺  𝒫  ω ) | 
						
							| 7 |  | sdomdom | ⊢ ( ω  ≺  𝒫  ω  →  ω  ≼  𝒫  ω ) | 
						
							| 8 | 5 6 7 | 3syl | ⊢ ( ω  ≼*  𝐴  →  ω  ≼  𝒫  ω ) | 
						
							| 9 |  | wdompwdom | ⊢ ( ω  ≼*  𝐴  →  𝒫  ω  ≼  𝒫  𝐴 ) | 
						
							| 10 |  | domtr | ⊢ ( ( ω  ≼  𝒫  ω  ∧  𝒫  ω  ≼  𝒫  𝐴 )  →  ω  ≼  𝒫  𝐴 ) | 
						
							| 11 | 8 9 10 | syl2anc | ⊢ ( ω  ≼*  𝐴  →  ω  ≼  𝒫  𝐴 ) | 
						
							| 12 | 3 11 | nsyl | ⊢ ( 𝒫  𝐴  ∈  FinIV  →  ¬  ω  ≼*  𝐴 ) | 
						
							| 13 | 1 12 | sylbi | ⊢ ( 𝐴  ∈  FinIII  →  ¬  ω  ≼*  𝐴 ) |