Step |
Hyp |
Ref |
Expression |
1 |
|
isfin3ds.f |
⊢ 𝐹 = { 𝑔 ∣ ∀ 𝑎 ∈ ( 𝒫 𝑔 ↑m ω ) ( ∀ 𝑏 ∈ ω ( 𝑎 ‘ suc 𝑏 ) ⊆ ( 𝑎 ‘ 𝑏 ) → ∩ ran 𝑎 ∈ ran 𝑎 ) } |
2 |
|
suceq |
⊢ ( 𝑏 = 𝑥 → suc 𝑏 = suc 𝑥 ) |
3 |
2
|
fveq2d |
⊢ ( 𝑏 = 𝑥 → ( 𝑎 ‘ suc 𝑏 ) = ( 𝑎 ‘ suc 𝑥 ) ) |
4 |
|
fveq2 |
⊢ ( 𝑏 = 𝑥 → ( 𝑎 ‘ 𝑏 ) = ( 𝑎 ‘ 𝑥 ) ) |
5 |
3 4
|
sseq12d |
⊢ ( 𝑏 = 𝑥 → ( ( 𝑎 ‘ suc 𝑏 ) ⊆ ( 𝑎 ‘ 𝑏 ) ↔ ( 𝑎 ‘ suc 𝑥 ) ⊆ ( 𝑎 ‘ 𝑥 ) ) ) |
6 |
5
|
cbvralvw |
⊢ ( ∀ 𝑏 ∈ ω ( 𝑎 ‘ suc 𝑏 ) ⊆ ( 𝑎 ‘ 𝑏 ) ↔ ∀ 𝑥 ∈ ω ( 𝑎 ‘ suc 𝑥 ) ⊆ ( 𝑎 ‘ 𝑥 ) ) |
7 |
|
fveq1 |
⊢ ( 𝑎 = 𝑓 → ( 𝑎 ‘ suc 𝑥 ) = ( 𝑓 ‘ suc 𝑥 ) ) |
8 |
|
fveq1 |
⊢ ( 𝑎 = 𝑓 → ( 𝑎 ‘ 𝑥 ) = ( 𝑓 ‘ 𝑥 ) ) |
9 |
7 8
|
sseq12d |
⊢ ( 𝑎 = 𝑓 → ( ( 𝑎 ‘ suc 𝑥 ) ⊆ ( 𝑎 ‘ 𝑥 ) ↔ ( 𝑓 ‘ suc 𝑥 ) ⊆ ( 𝑓 ‘ 𝑥 ) ) ) |
10 |
9
|
ralbidv |
⊢ ( 𝑎 = 𝑓 → ( ∀ 𝑥 ∈ ω ( 𝑎 ‘ suc 𝑥 ) ⊆ ( 𝑎 ‘ 𝑥 ) ↔ ∀ 𝑥 ∈ ω ( 𝑓 ‘ suc 𝑥 ) ⊆ ( 𝑓 ‘ 𝑥 ) ) ) |
11 |
6 10
|
syl5bb |
⊢ ( 𝑎 = 𝑓 → ( ∀ 𝑏 ∈ ω ( 𝑎 ‘ suc 𝑏 ) ⊆ ( 𝑎 ‘ 𝑏 ) ↔ ∀ 𝑥 ∈ ω ( 𝑓 ‘ suc 𝑥 ) ⊆ ( 𝑓 ‘ 𝑥 ) ) ) |
12 |
|
rneq |
⊢ ( 𝑎 = 𝑓 → ran 𝑎 = ran 𝑓 ) |
13 |
12
|
inteqd |
⊢ ( 𝑎 = 𝑓 → ∩ ran 𝑎 = ∩ ran 𝑓 ) |
14 |
13 12
|
eleq12d |
⊢ ( 𝑎 = 𝑓 → ( ∩ ran 𝑎 ∈ ran 𝑎 ↔ ∩ ran 𝑓 ∈ ran 𝑓 ) ) |
15 |
11 14
|
imbi12d |
⊢ ( 𝑎 = 𝑓 → ( ( ∀ 𝑏 ∈ ω ( 𝑎 ‘ suc 𝑏 ) ⊆ ( 𝑎 ‘ 𝑏 ) → ∩ ran 𝑎 ∈ ran 𝑎 ) ↔ ( ∀ 𝑥 ∈ ω ( 𝑓 ‘ suc 𝑥 ) ⊆ ( 𝑓 ‘ 𝑥 ) → ∩ ran 𝑓 ∈ ran 𝑓 ) ) ) |
16 |
15
|
cbvralvw |
⊢ ( ∀ 𝑎 ∈ ( 𝒫 𝑔 ↑m ω ) ( ∀ 𝑏 ∈ ω ( 𝑎 ‘ suc 𝑏 ) ⊆ ( 𝑎 ‘ 𝑏 ) → ∩ ran 𝑎 ∈ ran 𝑎 ) ↔ ∀ 𝑓 ∈ ( 𝒫 𝑔 ↑m ω ) ( ∀ 𝑥 ∈ ω ( 𝑓 ‘ suc 𝑥 ) ⊆ ( 𝑓 ‘ 𝑥 ) → ∩ ran 𝑓 ∈ ran 𝑓 ) ) |
17 |
|
pweq |
⊢ ( 𝑔 = 𝐴 → 𝒫 𝑔 = 𝒫 𝐴 ) |
18 |
17
|
oveq1d |
⊢ ( 𝑔 = 𝐴 → ( 𝒫 𝑔 ↑m ω ) = ( 𝒫 𝐴 ↑m ω ) ) |
19 |
18
|
raleqdv |
⊢ ( 𝑔 = 𝐴 → ( ∀ 𝑓 ∈ ( 𝒫 𝑔 ↑m ω ) ( ∀ 𝑥 ∈ ω ( 𝑓 ‘ suc 𝑥 ) ⊆ ( 𝑓 ‘ 𝑥 ) → ∩ ran 𝑓 ∈ ran 𝑓 ) ↔ ∀ 𝑓 ∈ ( 𝒫 𝐴 ↑m ω ) ( ∀ 𝑥 ∈ ω ( 𝑓 ‘ suc 𝑥 ) ⊆ ( 𝑓 ‘ 𝑥 ) → ∩ ran 𝑓 ∈ ran 𝑓 ) ) ) |
20 |
16 19
|
syl5bb |
⊢ ( 𝑔 = 𝐴 → ( ∀ 𝑎 ∈ ( 𝒫 𝑔 ↑m ω ) ( ∀ 𝑏 ∈ ω ( 𝑎 ‘ suc 𝑏 ) ⊆ ( 𝑎 ‘ 𝑏 ) → ∩ ran 𝑎 ∈ ran 𝑎 ) ↔ ∀ 𝑓 ∈ ( 𝒫 𝐴 ↑m ω ) ( ∀ 𝑥 ∈ ω ( 𝑓 ‘ suc 𝑥 ) ⊆ ( 𝑓 ‘ 𝑥 ) → ∩ ran 𝑓 ∈ ran 𝑓 ) ) ) |
21 |
20 1
|
elab2g |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ 𝐹 ↔ ∀ 𝑓 ∈ ( 𝒫 𝐴 ↑m ω ) ( ∀ 𝑥 ∈ ω ( 𝑓 ‘ suc 𝑥 ) ⊆ ( 𝑓 ‘ 𝑥 ) → ∩ ran 𝑓 ∈ ran 𝑓 ) ) ) |