Metamath Proof Explorer


Theorem isfin4p1

Description: Alternate definition of IV-finite sets: they are strictly dominated by their successors. (Thus, the proper subset referred to in isfin4 can be assumed to be only a singleton smaller than the original.) (Contributed by Mario Carneiro, 18-May-2015)

Ref Expression
Assertion isfin4p1 ( 𝐴 ∈ FinIV𝐴 ≺ ( 𝐴 ⊔ 1o ) )

Proof

Step Hyp Ref Expression
1 1on 1o ∈ On
2 djudoml ( ( 𝐴 ∈ FinIV ∧ 1o ∈ On ) → 𝐴 ≼ ( 𝐴 ⊔ 1o ) )
3 1 2 mpan2 ( 𝐴 ∈ FinIV𝐴 ≼ ( 𝐴 ⊔ 1o ) )
4 1oex 1o ∈ V
5 4 snid 1o ∈ { 1o }
6 0lt1o ∅ ∈ 1o
7 opelxpi ( ( 1o ∈ { 1o } ∧ ∅ ∈ 1o ) → ⟨ 1o , ∅ ⟩ ∈ ( { 1o } × 1o ) )
8 5 6 7 mp2an ⟨ 1o , ∅ ⟩ ∈ ( { 1o } × 1o )
9 elun2 ( ⟨ 1o , ∅ ⟩ ∈ ( { 1o } × 1o ) → ⟨ 1o , ∅ ⟩ ∈ ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 1o ) ) )
10 8 9 ax-mp ⟨ 1o , ∅ ⟩ ∈ ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 1o ) )
11 df-dju ( 𝐴 ⊔ 1o ) = ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 1o ) )
12 10 11 eleqtrri ⟨ 1o , ∅ ⟩ ∈ ( 𝐴 ⊔ 1o )
13 1n0 1o ≠ ∅
14 opelxp1 ( ⟨ 1o , ∅ ⟩ ∈ ( { ∅ } × 𝐴 ) → 1o ∈ { ∅ } )
15 elsni ( 1o ∈ { ∅ } → 1o = ∅ )
16 14 15 syl ( ⟨ 1o , ∅ ⟩ ∈ ( { ∅ } × 𝐴 ) → 1o = ∅ )
17 16 necon3ai ( 1o ≠ ∅ → ¬ ⟨ 1o , ∅ ⟩ ∈ ( { ∅ } × 𝐴 ) )
18 13 17 ax-mp ¬ ⟨ 1o , ∅ ⟩ ∈ ( { ∅ } × 𝐴 )
19 ssun1 ( { ∅ } × 𝐴 ) ⊆ ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 1o ) )
20 19 11 sseqtrri ( { ∅ } × 𝐴 ) ⊆ ( 𝐴 ⊔ 1o )
21 ssnelpss ( ( { ∅ } × 𝐴 ) ⊆ ( 𝐴 ⊔ 1o ) → ( ( ⟨ 1o , ∅ ⟩ ∈ ( 𝐴 ⊔ 1o ) ∧ ¬ ⟨ 1o , ∅ ⟩ ∈ ( { ∅ } × 𝐴 ) ) → ( { ∅ } × 𝐴 ) ⊊ ( 𝐴 ⊔ 1o ) ) )
22 20 21 ax-mp ( ( ⟨ 1o , ∅ ⟩ ∈ ( 𝐴 ⊔ 1o ) ∧ ¬ ⟨ 1o , ∅ ⟩ ∈ ( { ∅ } × 𝐴 ) ) → ( { ∅ } × 𝐴 ) ⊊ ( 𝐴 ⊔ 1o ) )
23 12 18 22 mp2an ( { ∅ } × 𝐴 ) ⊊ ( 𝐴 ⊔ 1o )
24 0ex ∅ ∈ V
25 relen Rel ≈
26 25 brrelex1i ( 𝐴 ≈ ( 𝐴 ⊔ 1o ) → 𝐴 ∈ V )
27 xpsnen2g ( ( ∅ ∈ V ∧ 𝐴 ∈ V ) → ( { ∅ } × 𝐴 ) ≈ 𝐴 )
28 24 26 27 sylancr ( 𝐴 ≈ ( 𝐴 ⊔ 1o ) → ( { ∅ } × 𝐴 ) ≈ 𝐴 )
29 entr ( ( ( { ∅ } × 𝐴 ) ≈ 𝐴𝐴 ≈ ( 𝐴 ⊔ 1o ) ) → ( { ∅ } × 𝐴 ) ≈ ( 𝐴 ⊔ 1o ) )
30 28 29 mpancom ( 𝐴 ≈ ( 𝐴 ⊔ 1o ) → ( { ∅ } × 𝐴 ) ≈ ( 𝐴 ⊔ 1o ) )
31 fin4i ( ( ( { ∅ } × 𝐴 ) ⊊ ( 𝐴 ⊔ 1o ) ∧ ( { ∅ } × 𝐴 ) ≈ ( 𝐴 ⊔ 1o ) ) → ¬ ( 𝐴 ⊔ 1o ) ∈ FinIV )
32 23 30 31 sylancr ( 𝐴 ≈ ( 𝐴 ⊔ 1o ) → ¬ ( 𝐴 ⊔ 1o ) ∈ FinIV )
33 fin4en1 ( 𝐴 ≈ ( 𝐴 ⊔ 1o ) → ( 𝐴 ∈ FinIV → ( 𝐴 ⊔ 1o ) ∈ FinIV ) )
34 32 33 mtod ( 𝐴 ≈ ( 𝐴 ⊔ 1o ) → ¬ 𝐴 ∈ FinIV )
35 34 con2i ( 𝐴 ∈ FinIV → ¬ 𝐴 ≈ ( 𝐴 ⊔ 1o ) )
36 brsdom ( 𝐴 ≺ ( 𝐴 ⊔ 1o ) ↔ ( 𝐴 ≼ ( 𝐴 ⊔ 1o ) ∧ ¬ 𝐴 ≈ ( 𝐴 ⊔ 1o ) ) )
37 3 35 36 sylanbrc ( 𝐴 ∈ FinIV𝐴 ≺ ( 𝐴 ⊔ 1o ) )
38 sdomnen ( 𝐴 ≺ ( 𝐴 ⊔ 1o ) → ¬ 𝐴 ≈ ( 𝐴 ⊔ 1o ) )
39 infdju1 ( ω ≼ 𝐴 → ( 𝐴 ⊔ 1o ) ≈ 𝐴 )
40 39 ensymd ( ω ≼ 𝐴𝐴 ≈ ( 𝐴 ⊔ 1o ) )
41 38 40 nsyl ( 𝐴 ≺ ( 𝐴 ⊔ 1o ) → ¬ ω ≼ 𝐴 )
42 relsdom Rel ≺
43 42 brrelex1i ( 𝐴 ≺ ( 𝐴 ⊔ 1o ) → 𝐴 ∈ V )
44 isfin4-2 ( 𝐴 ∈ V → ( 𝐴 ∈ FinIV ↔ ¬ ω ≼ 𝐴 ) )
45 43 44 syl ( 𝐴 ≺ ( 𝐴 ⊔ 1o ) → ( 𝐴 ∈ FinIV ↔ ¬ ω ≼ 𝐴 ) )
46 41 45 mpbird ( 𝐴 ≺ ( 𝐴 ⊔ 1o ) → 𝐴 ∈ FinIV )
47 37 46 impbii ( 𝐴 ∈ FinIV𝐴 ≺ ( 𝐴 ⊔ 1o ) )