Step |
Hyp |
Ref |
Expression |
1 |
|
1on |
⊢ 1o ∈ On |
2 |
|
djudoml |
⊢ ( ( 𝐴 ∈ FinIV ∧ 1o ∈ On ) → 𝐴 ≼ ( 𝐴 ⊔ 1o ) ) |
3 |
1 2
|
mpan2 |
⊢ ( 𝐴 ∈ FinIV → 𝐴 ≼ ( 𝐴 ⊔ 1o ) ) |
4 |
|
1oex |
⊢ 1o ∈ V |
5 |
4
|
snid |
⊢ 1o ∈ { 1o } |
6 |
|
0lt1o |
⊢ ∅ ∈ 1o |
7 |
|
opelxpi |
⊢ ( ( 1o ∈ { 1o } ∧ ∅ ∈ 1o ) → 〈 1o , ∅ 〉 ∈ ( { 1o } × 1o ) ) |
8 |
5 6 7
|
mp2an |
⊢ 〈 1o , ∅ 〉 ∈ ( { 1o } × 1o ) |
9 |
|
elun2 |
⊢ ( 〈 1o , ∅ 〉 ∈ ( { 1o } × 1o ) → 〈 1o , ∅ 〉 ∈ ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 1o ) ) ) |
10 |
8 9
|
ax-mp |
⊢ 〈 1o , ∅ 〉 ∈ ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 1o ) ) |
11 |
|
df-dju |
⊢ ( 𝐴 ⊔ 1o ) = ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 1o ) ) |
12 |
10 11
|
eleqtrri |
⊢ 〈 1o , ∅ 〉 ∈ ( 𝐴 ⊔ 1o ) |
13 |
|
1n0 |
⊢ 1o ≠ ∅ |
14 |
|
opelxp1 |
⊢ ( 〈 1o , ∅ 〉 ∈ ( { ∅ } × 𝐴 ) → 1o ∈ { ∅ } ) |
15 |
|
elsni |
⊢ ( 1o ∈ { ∅ } → 1o = ∅ ) |
16 |
14 15
|
syl |
⊢ ( 〈 1o , ∅ 〉 ∈ ( { ∅ } × 𝐴 ) → 1o = ∅ ) |
17 |
16
|
necon3ai |
⊢ ( 1o ≠ ∅ → ¬ 〈 1o , ∅ 〉 ∈ ( { ∅ } × 𝐴 ) ) |
18 |
13 17
|
ax-mp |
⊢ ¬ 〈 1o , ∅ 〉 ∈ ( { ∅ } × 𝐴 ) |
19 |
|
ssun1 |
⊢ ( { ∅ } × 𝐴 ) ⊆ ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 1o ) ) |
20 |
19 11
|
sseqtrri |
⊢ ( { ∅ } × 𝐴 ) ⊆ ( 𝐴 ⊔ 1o ) |
21 |
|
ssnelpss |
⊢ ( ( { ∅ } × 𝐴 ) ⊆ ( 𝐴 ⊔ 1o ) → ( ( 〈 1o , ∅ 〉 ∈ ( 𝐴 ⊔ 1o ) ∧ ¬ 〈 1o , ∅ 〉 ∈ ( { ∅ } × 𝐴 ) ) → ( { ∅ } × 𝐴 ) ⊊ ( 𝐴 ⊔ 1o ) ) ) |
22 |
20 21
|
ax-mp |
⊢ ( ( 〈 1o , ∅ 〉 ∈ ( 𝐴 ⊔ 1o ) ∧ ¬ 〈 1o , ∅ 〉 ∈ ( { ∅ } × 𝐴 ) ) → ( { ∅ } × 𝐴 ) ⊊ ( 𝐴 ⊔ 1o ) ) |
23 |
12 18 22
|
mp2an |
⊢ ( { ∅ } × 𝐴 ) ⊊ ( 𝐴 ⊔ 1o ) |
24 |
|
0ex |
⊢ ∅ ∈ V |
25 |
|
relen |
⊢ Rel ≈ |
26 |
25
|
brrelex1i |
⊢ ( 𝐴 ≈ ( 𝐴 ⊔ 1o ) → 𝐴 ∈ V ) |
27 |
|
xpsnen2g |
⊢ ( ( ∅ ∈ V ∧ 𝐴 ∈ V ) → ( { ∅ } × 𝐴 ) ≈ 𝐴 ) |
28 |
24 26 27
|
sylancr |
⊢ ( 𝐴 ≈ ( 𝐴 ⊔ 1o ) → ( { ∅ } × 𝐴 ) ≈ 𝐴 ) |
29 |
|
entr |
⊢ ( ( ( { ∅ } × 𝐴 ) ≈ 𝐴 ∧ 𝐴 ≈ ( 𝐴 ⊔ 1o ) ) → ( { ∅ } × 𝐴 ) ≈ ( 𝐴 ⊔ 1o ) ) |
30 |
28 29
|
mpancom |
⊢ ( 𝐴 ≈ ( 𝐴 ⊔ 1o ) → ( { ∅ } × 𝐴 ) ≈ ( 𝐴 ⊔ 1o ) ) |
31 |
|
fin4i |
⊢ ( ( ( { ∅ } × 𝐴 ) ⊊ ( 𝐴 ⊔ 1o ) ∧ ( { ∅ } × 𝐴 ) ≈ ( 𝐴 ⊔ 1o ) ) → ¬ ( 𝐴 ⊔ 1o ) ∈ FinIV ) |
32 |
23 30 31
|
sylancr |
⊢ ( 𝐴 ≈ ( 𝐴 ⊔ 1o ) → ¬ ( 𝐴 ⊔ 1o ) ∈ FinIV ) |
33 |
|
fin4en1 |
⊢ ( 𝐴 ≈ ( 𝐴 ⊔ 1o ) → ( 𝐴 ∈ FinIV → ( 𝐴 ⊔ 1o ) ∈ FinIV ) ) |
34 |
32 33
|
mtod |
⊢ ( 𝐴 ≈ ( 𝐴 ⊔ 1o ) → ¬ 𝐴 ∈ FinIV ) |
35 |
34
|
con2i |
⊢ ( 𝐴 ∈ FinIV → ¬ 𝐴 ≈ ( 𝐴 ⊔ 1o ) ) |
36 |
|
brsdom |
⊢ ( 𝐴 ≺ ( 𝐴 ⊔ 1o ) ↔ ( 𝐴 ≼ ( 𝐴 ⊔ 1o ) ∧ ¬ 𝐴 ≈ ( 𝐴 ⊔ 1o ) ) ) |
37 |
3 35 36
|
sylanbrc |
⊢ ( 𝐴 ∈ FinIV → 𝐴 ≺ ( 𝐴 ⊔ 1o ) ) |
38 |
|
sdomnen |
⊢ ( 𝐴 ≺ ( 𝐴 ⊔ 1o ) → ¬ 𝐴 ≈ ( 𝐴 ⊔ 1o ) ) |
39 |
|
infdju1 |
⊢ ( ω ≼ 𝐴 → ( 𝐴 ⊔ 1o ) ≈ 𝐴 ) |
40 |
39
|
ensymd |
⊢ ( ω ≼ 𝐴 → 𝐴 ≈ ( 𝐴 ⊔ 1o ) ) |
41 |
38 40
|
nsyl |
⊢ ( 𝐴 ≺ ( 𝐴 ⊔ 1o ) → ¬ ω ≼ 𝐴 ) |
42 |
|
relsdom |
⊢ Rel ≺ |
43 |
42
|
brrelex1i |
⊢ ( 𝐴 ≺ ( 𝐴 ⊔ 1o ) → 𝐴 ∈ V ) |
44 |
|
isfin4-2 |
⊢ ( 𝐴 ∈ V → ( 𝐴 ∈ FinIV ↔ ¬ ω ≼ 𝐴 ) ) |
45 |
43 44
|
syl |
⊢ ( 𝐴 ≺ ( 𝐴 ⊔ 1o ) → ( 𝐴 ∈ FinIV ↔ ¬ ω ≼ 𝐴 ) ) |
46 |
41 45
|
mpbird |
⊢ ( 𝐴 ≺ ( 𝐴 ⊔ 1o ) → 𝐴 ∈ FinIV ) |
47 |
37 46
|
impbii |
⊢ ( 𝐴 ∈ FinIV ↔ 𝐴 ≺ ( 𝐴 ⊔ 1o ) ) |