Step |
Hyp |
Ref |
Expression |
1 |
|
nne |
⊢ ( ¬ 𝐴 ≠ ∅ ↔ 𝐴 = ∅ ) |
2 |
1
|
bicomi |
⊢ ( 𝐴 = ∅ ↔ ¬ 𝐴 ≠ ∅ ) |
3 |
2
|
a1i |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 = ∅ ↔ ¬ 𝐴 ≠ ∅ ) ) |
4 |
|
djudoml |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ) → 𝐴 ≼ ( 𝐴 ⊔ 𝐴 ) ) |
5 |
4
|
anidms |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ≼ ( 𝐴 ⊔ 𝐴 ) ) |
6 |
|
brsdom |
⊢ ( 𝐴 ≺ ( 𝐴 ⊔ 𝐴 ) ↔ ( 𝐴 ≼ ( 𝐴 ⊔ 𝐴 ) ∧ ¬ 𝐴 ≈ ( 𝐴 ⊔ 𝐴 ) ) ) |
7 |
6
|
baib |
⊢ ( 𝐴 ≼ ( 𝐴 ⊔ 𝐴 ) → ( 𝐴 ≺ ( 𝐴 ⊔ 𝐴 ) ↔ ¬ 𝐴 ≈ ( 𝐴 ⊔ 𝐴 ) ) ) |
8 |
5 7
|
syl |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ≺ ( 𝐴 ⊔ 𝐴 ) ↔ ¬ 𝐴 ≈ ( 𝐴 ⊔ 𝐴 ) ) ) |
9 |
3 8
|
orbi12d |
⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝐴 = ∅ ∨ 𝐴 ≺ ( 𝐴 ⊔ 𝐴 ) ) ↔ ( ¬ 𝐴 ≠ ∅ ∨ ¬ 𝐴 ≈ ( 𝐴 ⊔ 𝐴 ) ) ) ) |
10 |
|
isfin5 |
⊢ ( 𝐴 ∈ FinV ↔ ( 𝐴 = ∅ ∨ 𝐴 ≺ ( 𝐴 ⊔ 𝐴 ) ) ) |
11 |
|
ianor |
⊢ ( ¬ ( 𝐴 ≠ ∅ ∧ 𝐴 ≈ ( 𝐴 ⊔ 𝐴 ) ) ↔ ( ¬ 𝐴 ≠ ∅ ∨ ¬ 𝐴 ≈ ( 𝐴 ⊔ 𝐴 ) ) ) |
12 |
9 10 11
|
3bitr4g |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ FinV ↔ ¬ ( 𝐴 ≠ ∅ ∧ 𝐴 ≈ ( 𝐴 ⊔ 𝐴 ) ) ) ) |