Step |
Hyp |
Ref |
Expression |
1 |
|
df-fin6 |
⊢ FinVI = { 𝑥 ∣ ( 𝑥 ≺ 2o ∨ 𝑥 ≺ ( 𝑥 × 𝑥 ) ) } |
2 |
1
|
eleq2i |
⊢ ( 𝐴 ∈ FinVI ↔ 𝐴 ∈ { 𝑥 ∣ ( 𝑥 ≺ 2o ∨ 𝑥 ≺ ( 𝑥 × 𝑥 ) ) } ) |
3 |
|
relsdom |
⊢ Rel ≺ |
4 |
3
|
brrelex1i |
⊢ ( 𝐴 ≺ 2o → 𝐴 ∈ V ) |
5 |
3
|
brrelex1i |
⊢ ( 𝐴 ≺ ( 𝐴 × 𝐴 ) → 𝐴 ∈ V ) |
6 |
4 5
|
jaoi |
⊢ ( ( 𝐴 ≺ 2o ∨ 𝐴 ≺ ( 𝐴 × 𝐴 ) ) → 𝐴 ∈ V ) |
7 |
|
breq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ≺ 2o ↔ 𝐴 ≺ 2o ) ) |
8 |
|
id |
⊢ ( 𝑥 = 𝐴 → 𝑥 = 𝐴 ) |
9 |
8
|
sqxpeqd |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 × 𝑥 ) = ( 𝐴 × 𝐴 ) ) |
10 |
8 9
|
breq12d |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ≺ ( 𝑥 × 𝑥 ) ↔ 𝐴 ≺ ( 𝐴 × 𝐴 ) ) ) |
11 |
7 10
|
orbi12d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ≺ 2o ∨ 𝑥 ≺ ( 𝑥 × 𝑥 ) ) ↔ ( 𝐴 ≺ 2o ∨ 𝐴 ≺ ( 𝐴 × 𝐴 ) ) ) ) |
12 |
6 11
|
elab3 |
⊢ ( 𝐴 ∈ { 𝑥 ∣ ( 𝑥 ≺ 2o ∨ 𝑥 ≺ ( 𝑥 × 𝑥 ) ) } ↔ ( 𝐴 ≺ 2o ∨ 𝐴 ≺ ( 𝐴 × 𝐴 ) ) ) |
13 |
2 12
|
bitri |
⊢ ( 𝐴 ∈ FinVI ↔ ( 𝐴 ≺ 2o ∨ 𝐴 ≺ ( 𝐴 × 𝐴 ) ) ) |