Step |
Hyp |
Ref |
Expression |
1 |
|
relsdom |
⊢ Rel ≺ |
2 |
1
|
brrelex2i |
⊢ ( 𝐴 ≺ ω → ω ∈ V ) |
3 |
|
sdomdom |
⊢ ( 𝐴 ≺ ω → 𝐴 ≼ ω ) |
4 |
|
domeng |
⊢ ( ω ∈ V → ( 𝐴 ≼ ω ↔ ∃ 𝑦 ( 𝐴 ≈ 𝑦 ∧ 𝑦 ⊆ ω ) ) ) |
5 |
3 4
|
syl5ib |
⊢ ( ω ∈ V → ( 𝐴 ≺ ω → ∃ 𝑦 ( 𝐴 ≈ 𝑦 ∧ 𝑦 ⊆ ω ) ) ) |
6 |
|
ensym |
⊢ ( 𝐴 ≈ 𝑦 → 𝑦 ≈ 𝐴 ) |
7 |
6
|
ad2antrl |
⊢ ( ( 𝐴 ≺ ω ∧ ( 𝐴 ≈ 𝑦 ∧ 𝑦 ⊆ ω ) ) → 𝑦 ≈ 𝐴 ) |
8 |
|
simpl |
⊢ ( ( 𝐴 ≺ ω ∧ ( 𝐴 ≈ 𝑦 ∧ 𝑦 ⊆ ω ) ) → 𝐴 ≺ ω ) |
9 |
|
ensdomtr |
⊢ ( ( 𝑦 ≈ 𝐴 ∧ 𝐴 ≺ ω ) → 𝑦 ≺ ω ) |
10 |
7 8 9
|
syl2anc |
⊢ ( ( 𝐴 ≺ ω ∧ ( 𝐴 ≈ 𝑦 ∧ 𝑦 ⊆ ω ) ) → 𝑦 ≺ ω ) |
11 |
|
sdomnen |
⊢ ( 𝑦 ≺ ω → ¬ 𝑦 ≈ ω ) |
12 |
10 11
|
syl |
⊢ ( ( 𝐴 ≺ ω ∧ ( 𝐴 ≈ 𝑦 ∧ 𝑦 ⊆ ω ) ) → ¬ 𝑦 ≈ ω ) |
13 |
|
simpr |
⊢ ( ( 𝐴 ≈ 𝑦 ∧ 𝑦 ⊆ ω ) → 𝑦 ⊆ ω ) |
14 |
|
unbnn |
⊢ ( ( ω ∈ V ∧ 𝑦 ⊆ ω ∧ ∀ 𝑧 ∈ ω ∃ 𝑤 ∈ 𝑦 𝑧 ∈ 𝑤 ) → 𝑦 ≈ ω ) |
15 |
14
|
3expia |
⊢ ( ( ω ∈ V ∧ 𝑦 ⊆ ω ) → ( ∀ 𝑧 ∈ ω ∃ 𝑤 ∈ 𝑦 𝑧 ∈ 𝑤 → 𝑦 ≈ ω ) ) |
16 |
2 13 15
|
syl2an |
⊢ ( ( 𝐴 ≺ ω ∧ ( 𝐴 ≈ 𝑦 ∧ 𝑦 ⊆ ω ) ) → ( ∀ 𝑧 ∈ ω ∃ 𝑤 ∈ 𝑦 𝑧 ∈ 𝑤 → 𝑦 ≈ ω ) ) |
17 |
12 16
|
mtod |
⊢ ( ( 𝐴 ≺ ω ∧ ( 𝐴 ≈ 𝑦 ∧ 𝑦 ⊆ ω ) ) → ¬ ∀ 𝑧 ∈ ω ∃ 𝑤 ∈ 𝑦 𝑧 ∈ 𝑤 ) |
18 |
|
rexnal |
⊢ ( ∃ 𝑧 ∈ ω ¬ ∃ 𝑤 ∈ 𝑦 𝑧 ∈ 𝑤 ↔ ¬ ∀ 𝑧 ∈ ω ∃ 𝑤 ∈ 𝑦 𝑧 ∈ 𝑤 ) |
19 |
|
omsson |
⊢ ω ⊆ On |
20 |
|
sstr |
⊢ ( ( 𝑦 ⊆ ω ∧ ω ⊆ On ) → 𝑦 ⊆ On ) |
21 |
19 20
|
mpan2 |
⊢ ( 𝑦 ⊆ ω → 𝑦 ⊆ On ) |
22 |
|
nnord |
⊢ ( 𝑧 ∈ ω → Ord 𝑧 ) |
23 |
|
ssel2 |
⊢ ( ( 𝑦 ⊆ On ∧ 𝑤 ∈ 𝑦 ) → 𝑤 ∈ On ) |
24 |
|
vex |
⊢ 𝑤 ∈ V |
25 |
24
|
elon |
⊢ ( 𝑤 ∈ On ↔ Ord 𝑤 ) |
26 |
23 25
|
sylib |
⊢ ( ( 𝑦 ⊆ On ∧ 𝑤 ∈ 𝑦 ) → Ord 𝑤 ) |
27 |
|
ordtri1 |
⊢ ( ( Ord 𝑤 ∧ Ord 𝑧 ) → ( 𝑤 ⊆ 𝑧 ↔ ¬ 𝑧 ∈ 𝑤 ) ) |
28 |
26 27
|
sylan |
⊢ ( ( ( 𝑦 ⊆ On ∧ 𝑤 ∈ 𝑦 ) ∧ Ord 𝑧 ) → ( 𝑤 ⊆ 𝑧 ↔ ¬ 𝑧 ∈ 𝑤 ) ) |
29 |
28
|
an32s |
⊢ ( ( ( 𝑦 ⊆ On ∧ Ord 𝑧 ) ∧ 𝑤 ∈ 𝑦 ) → ( 𝑤 ⊆ 𝑧 ↔ ¬ 𝑧 ∈ 𝑤 ) ) |
30 |
29
|
ralbidva |
⊢ ( ( 𝑦 ⊆ On ∧ Ord 𝑧 ) → ( ∀ 𝑤 ∈ 𝑦 𝑤 ⊆ 𝑧 ↔ ∀ 𝑤 ∈ 𝑦 ¬ 𝑧 ∈ 𝑤 ) ) |
31 |
|
unissb |
⊢ ( ∪ 𝑦 ⊆ 𝑧 ↔ ∀ 𝑤 ∈ 𝑦 𝑤 ⊆ 𝑧 ) |
32 |
|
ralnex |
⊢ ( ∀ 𝑤 ∈ 𝑦 ¬ 𝑧 ∈ 𝑤 ↔ ¬ ∃ 𝑤 ∈ 𝑦 𝑧 ∈ 𝑤 ) |
33 |
32
|
bicomi |
⊢ ( ¬ ∃ 𝑤 ∈ 𝑦 𝑧 ∈ 𝑤 ↔ ∀ 𝑤 ∈ 𝑦 ¬ 𝑧 ∈ 𝑤 ) |
34 |
30 31 33
|
3bitr4g |
⊢ ( ( 𝑦 ⊆ On ∧ Ord 𝑧 ) → ( ∪ 𝑦 ⊆ 𝑧 ↔ ¬ ∃ 𝑤 ∈ 𝑦 𝑧 ∈ 𝑤 ) ) |
35 |
|
ordunisssuc |
⊢ ( ( 𝑦 ⊆ On ∧ Ord 𝑧 ) → ( ∪ 𝑦 ⊆ 𝑧 ↔ 𝑦 ⊆ suc 𝑧 ) ) |
36 |
34 35
|
bitr3d |
⊢ ( ( 𝑦 ⊆ On ∧ Ord 𝑧 ) → ( ¬ ∃ 𝑤 ∈ 𝑦 𝑧 ∈ 𝑤 ↔ 𝑦 ⊆ suc 𝑧 ) ) |
37 |
21 22 36
|
syl2an |
⊢ ( ( 𝑦 ⊆ ω ∧ 𝑧 ∈ ω ) → ( ¬ ∃ 𝑤 ∈ 𝑦 𝑧 ∈ 𝑤 ↔ 𝑦 ⊆ suc 𝑧 ) ) |
38 |
|
peano2b |
⊢ ( 𝑧 ∈ ω ↔ suc 𝑧 ∈ ω ) |
39 |
|
ssnnfi |
⊢ ( ( suc 𝑧 ∈ ω ∧ 𝑦 ⊆ suc 𝑧 ) → 𝑦 ∈ Fin ) |
40 |
38 39
|
sylanb |
⊢ ( ( 𝑧 ∈ ω ∧ 𝑦 ⊆ suc 𝑧 ) → 𝑦 ∈ Fin ) |
41 |
40
|
ex |
⊢ ( 𝑧 ∈ ω → ( 𝑦 ⊆ suc 𝑧 → 𝑦 ∈ Fin ) ) |
42 |
41
|
adantl |
⊢ ( ( 𝑦 ⊆ ω ∧ 𝑧 ∈ ω ) → ( 𝑦 ⊆ suc 𝑧 → 𝑦 ∈ Fin ) ) |
43 |
37 42
|
sylbid |
⊢ ( ( 𝑦 ⊆ ω ∧ 𝑧 ∈ ω ) → ( ¬ ∃ 𝑤 ∈ 𝑦 𝑧 ∈ 𝑤 → 𝑦 ∈ Fin ) ) |
44 |
43
|
rexlimdva |
⊢ ( 𝑦 ⊆ ω → ( ∃ 𝑧 ∈ ω ¬ ∃ 𝑤 ∈ 𝑦 𝑧 ∈ 𝑤 → 𝑦 ∈ Fin ) ) |
45 |
18 44
|
syl5bir |
⊢ ( 𝑦 ⊆ ω → ( ¬ ∀ 𝑧 ∈ ω ∃ 𝑤 ∈ 𝑦 𝑧 ∈ 𝑤 → 𝑦 ∈ Fin ) ) |
46 |
45
|
ad2antll |
⊢ ( ( 𝐴 ≺ ω ∧ ( 𝐴 ≈ 𝑦 ∧ 𝑦 ⊆ ω ) ) → ( ¬ ∀ 𝑧 ∈ ω ∃ 𝑤 ∈ 𝑦 𝑧 ∈ 𝑤 → 𝑦 ∈ Fin ) ) |
47 |
17 46
|
mpd |
⊢ ( ( 𝐴 ≺ ω ∧ ( 𝐴 ≈ 𝑦 ∧ 𝑦 ⊆ ω ) ) → 𝑦 ∈ Fin ) |
48 |
|
simprl |
⊢ ( ( 𝐴 ≺ ω ∧ ( 𝐴 ≈ 𝑦 ∧ 𝑦 ⊆ ω ) ) → 𝐴 ≈ 𝑦 ) |
49 |
|
enfii |
⊢ ( ( 𝑦 ∈ Fin ∧ 𝐴 ≈ 𝑦 ) → 𝐴 ∈ Fin ) |
50 |
47 48 49
|
syl2anc |
⊢ ( ( 𝐴 ≺ ω ∧ ( 𝐴 ≈ 𝑦 ∧ 𝑦 ⊆ ω ) ) → 𝐴 ∈ Fin ) |
51 |
50
|
ex |
⊢ ( 𝐴 ≺ ω → ( ( 𝐴 ≈ 𝑦 ∧ 𝑦 ⊆ ω ) → 𝐴 ∈ Fin ) ) |
52 |
51
|
exlimdv |
⊢ ( 𝐴 ≺ ω → ( ∃ 𝑦 ( 𝐴 ≈ 𝑦 ∧ 𝑦 ⊆ ω ) → 𝐴 ∈ Fin ) ) |
53 |
5 52
|
sylcom |
⊢ ( ω ∈ V → ( 𝐴 ≺ ω → 𝐴 ∈ Fin ) ) |
54 |
2 53
|
mpcom |
⊢ ( 𝐴 ≺ ω → 𝐴 ∈ Fin ) |