Step |
Hyp |
Ref |
Expression |
1 |
|
hashcl |
⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) |
2 |
|
hashfz1 |
⊢ ( ( ♯ ‘ 𝐴 ) ∈ ℕ0 → ( ♯ ‘ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) = ( ♯ ‘ 𝐴 ) ) |
3 |
1 2
|
syl |
⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) = ( ♯ ‘ 𝐴 ) ) |
4 |
|
fzfi |
⊢ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∈ Fin |
5 |
|
hashen |
⊢ ( ( ( 1 ... ( ♯ ‘ 𝐴 ) ) ∈ Fin ∧ 𝐴 ∈ Fin ) → ( ( ♯ ‘ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) = ( ♯ ‘ 𝐴 ) ↔ ( 1 ... ( ♯ ‘ 𝐴 ) ) ≈ 𝐴 ) ) |
6 |
4 5
|
mpan |
⊢ ( 𝐴 ∈ Fin → ( ( ♯ ‘ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) = ( ♯ ‘ 𝐴 ) ↔ ( 1 ... ( ♯ ‘ 𝐴 ) ) ≈ 𝐴 ) ) |
7 |
3 6
|
mpbid |
⊢ ( 𝐴 ∈ Fin → ( 1 ... ( ♯ ‘ 𝐴 ) ) ≈ 𝐴 ) |
8 |
|
ensym |
⊢ ( ( 1 ... ( ♯ ‘ 𝐴 ) ) ≈ 𝐴 → 𝐴 ≈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) |
9 |
|
enfi |
⊢ ( 𝐴 ≈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( 𝐴 ∈ Fin ↔ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∈ Fin ) ) |
10 |
9
|
biimprcd |
⊢ ( ( 1 ... ( ♯ ‘ 𝐴 ) ) ∈ Fin → ( 𝐴 ≈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → 𝐴 ∈ Fin ) ) |
11 |
4 8 10
|
mpsyl |
⊢ ( ( 1 ... ( ♯ ‘ 𝐴 ) ) ≈ 𝐴 → 𝐴 ∈ Fin ) |
12 |
7 11
|
impbii |
⊢ ( 𝐴 ∈ Fin ↔ ( 1 ... ( ♯ ‘ 𝐴 ) ) ≈ 𝐴 ) |