Step |
Hyp |
Ref |
Expression |
1 |
|
flddivrng |
⊢ ( 𝐾 ∈ Fld → 𝐾 ∈ DivRingOps ) |
2 |
|
fldcrng |
⊢ ( 𝐾 ∈ Fld → 𝐾 ∈ CRingOps ) |
3 |
1 2
|
jca |
⊢ ( 𝐾 ∈ Fld → ( 𝐾 ∈ DivRingOps ∧ 𝐾 ∈ CRingOps ) ) |
4 |
|
iscrngo |
⊢ ( 𝐾 ∈ CRingOps ↔ ( 𝐾 ∈ RingOps ∧ 𝐾 ∈ Com2 ) ) |
5 |
4
|
simprbi |
⊢ ( 𝐾 ∈ CRingOps → 𝐾 ∈ Com2 ) |
6 |
|
elin |
⊢ ( 𝐾 ∈ ( DivRingOps ∩ Com2 ) ↔ ( 𝐾 ∈ DivRingOps ∧ 𝐾 ∈ Com2 ) ) |
7 |
6
|
biimpri |
⊢ ( ( 𝐾 ∈ DivRingOps ∧ 𝐾 ∈ Com2 ) → 𝐾 ∈ ( DivRingOps ∩ Com2 ) ) |
8 |
|
df-fld |
⊢ Fld = ( DivRingOps ∩ Com2 ) |
9 |
7 8
|
eleqtrrdi |
⊢ ( ( 𝐾 ∈ DivRingOps ∧ 𝐾 ∈ Com2 ) → 𝐾 ∈ Fld ) |
10 |
5 9
|
sylan2 |
⊢ ( ( 𝐾 ∈ DivRingOps ∧ 𝐾 ∈ CRingOps ) → 𝐾 ∈ Fld ) |
11 |
3 10
|
impbii |
⊢ ( 𝐾 ∈ Fld ↔ ( 𝐾 ∈ DivRingOps ∧ 𝐾 ∈ CRingOps ) ) |