Step |
Hyp |
Ref |
Expression |
1 |
|
isfrgr.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
isfrgr.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
3 |
|
fvex |
⊢ ( Vtx ‘ 𝑔 ) ∈ V |
4 |
|
fvex |
⊢ ( Edg ‘ 𝑔 ) ∈ V |
5 |
|
fveq2 |
⊢ ( 𝑔 = 𝐺 → ( Vtx ‘ 𝑔 ) = ( Vtx ‘ 𝐺 ) ) |
6 |
5
|
eqeq2d |
⊢ ( 𝑔 = 𝐺 → ( 𝑣 = ( Vtx ‘ 𝑔 ) ↔ 𝑣 = ( Vtx ‘ 𝐺 ) ) ) |
7 |
1
|
eqcomi |
⊢ ( Vtx ‘ 𝐺 ) = 𝑉 |
8 |
7
|
eqeq2i |
⊢ ( 𝑣 = ( Vtx ‘ 𝐺 ) ↔ 𝑣 = 𝑉 ) |
9 |
6 8
|
bitrdi |
⊢ ( 𝑔 = 𝐺 → ( 𝑣 = ( Vtx ‘ 𝑔 ) ↔ 𝑣 = 𝑉 ) ) |
10 |
|
fveq2 |
⊢ ( 𝑔 = 𝐺 → ( Edg ‘ 𝑔 ) = ( Edg ‘ 𝐺 ) ) |
11 |
10
|
eqeq2d |
⊢ ( 𝑔 = 𝐺 → ( 𝑒 = ( Edg ‘ 𝑔 ) ↔ 𝑒 = ( Edg ‘ 𝐺 ) ) ) |
12 |
2
|
eqcomi |
⊢ ( Edg ‘ 𝐺 ) = 𝐸 |
13 |
12
|
eqeq2i |
⊢ ( 𝑒 = ( Edg ‘ 𝐺 ) ↔ 𝑒 = 𝐸 ) |
14 |
11 13
|
bitrdi |
⊢ ( 𝑔 = 𝐺 → ( 𝑒 = ( Edg ‘ 𝑔 ) ↔ 𝑒 = 𝐸 ) ) |
15 |
9 14
|
anbi12d |
⊢ ( 𝑔 = 𝐺 → ( ( 𝑣 = ( Vtx ‘ 𝑔 ) ∧ 𝑒 = ( Edg ‘ 𝑔 ) ) ↔ ( 𝑣 = 𝑉 ∧ 𝑒 = 𝐸 ) ) ) |
16 |
|
simpl |
⊢ ( ( 𝑣 = 𝑉 ∧ 𝑒 = 𝐸 ) → 𝑣 = 𝑉 ) |
17 |
|
difeq1 |
⊢ ( 𝑣 = 𝑉 → ( 𝑣 ∖ { 𝑘 } ) = ( 𝑉 ∖ { 𝑘 } ) ) |
18 |
17
|
adantr |
⊢ ( ( 𝑣 = 𝑉 ∧ 𝑒 = 𝐸 ) → ( 𝑣 ∖ { 𝑘 } ) = ( 𝑉 ∖ { 𝑘 } ) ) |
19 |
|
reueq1 |
⊢ ( 𝑣 = 𝑉 → ( ∃! 𝑥 ∈ 𝑣 { { 𝑥 , 𝑘 } , { 𝑥 , 𝑙 } } ⊆ 𝑒 ↔ ∃! 𝑥 ∈ 𝑉 { { 𝑥 , 𝑘 } , { 𝑥 , 𝑙 } } ⊆ 𝑒 ) ) |
20 |
19
|
adantr |
⊢ ( ( 𝑣 = 𝑉 ∧ 𝑒 = 𝐸 ) → ( ∃! 𝑥 ∈ 𝑣 { { 𝑥 , 𝑘 } , { 𝑥 , 𝑙 } } ⊆ 𝑒 ↔ ∃! 𝑥 ∈ 𝑉 { { 𝑥 , 𝑘 } , { 𝑥 , 𝑙 } } ⊆ 𝑒 ) ) |
21 |
|
sseq2 |
⊢ ( 𝑒 = 𝐸 → ( { { 𝑥 , 𝑘 } , { 𝑥 , 𝑙 } } ⊆ 𝑒 ↔ { { 𝑥 , 𝑘 } , { 𝑥 , 𝑙 } } ⊆ 𝐸 ) ) |
22 |
21
|
adantl |
⊢ ( ( 𝑣 = 𝑉 ∧ 𝑒 = 𝐸 ) → ( { { 𝑥 , 𝑘 } , { 𝑥 , 𝑙 } } ⊆ 𝑒 ↔ { { 𝑥 , 𝑘 } , { 𝑥 , 𝑙 } } ⊆ 𝐸 ) ) |
23 |
22
|
reubidv |
⊢ ( ( 𝑣 = 𝑉 ∧ 𝑒 = 𝐸 ) → ( ∃! 𝑥 ∈ 𝑉 { { 𝑥 , 𝑘 } , { 𝑥 , 𝑙 } } ⊆ 𝑒 ↔ ∃! 𝑥 ∈ 𝑉 { { 𝑥 , 𝑘 } , { 𝑥 , 𝑙 } } ⊆ 𝐸 ) ) |
24 |
20 23
|
bitrd |
⊢ ( ( 𝑣 = 𝑉 ∧ 𝑒 = 𝐸 ) → ( ∃! 𝑥 ∈ 𝑣 { { 𝑥 , 𝑘 } , { 𝑥 , 𝑙 } } ⊆ 𝑒 ↔ ∃! 𝑥 ∈ 𝑉 { { 𝑥 , 𝑘 } , { 𝑥 , 𝑙 } } ⊆ 𝐸 ) ) |
25 |
18 24
|
raleqbidv |
⊢ ( ( 𝑣 = 𝑉 ∧ 𝑒 = 𝐸 ) → ( ∀ 𝑙 ∈ ( 𝑣 ∖ { 𝑘 } ) ∃! 𝑥 ∈ 𝑣 { { 𝑥 , 𝑘 } , { 𝑥 , 𝑙 } } ⊆ 𝑒 ↔ ∀ 𝑙 ∈ ( 𝑉 ∖ { 𝑘 } ) ∃! 𝑥 ∈ 𝑉 { { 𝑥 , 𝑘 } , { 𝑥 , 𝑙 } } ⊆ 𝐸 ) ) |
26 |
16 25
|
raleqbidv |
⊢ ( ( 𝑣 = 𝑉 ∧ 𝑒 = 𝐸 ) → ( ∀ 𝑘 ∈ 𝑣 ∀ 𝑙 ∈ ( 𝑣 ∖ { 𝑘 } ) ∃! 𝑥 ∈ 𝑣 { { 𝑥 , 𝑘 } , { 𝑥 , 𝑙 } } ⊆ 𝑒 ↔ ∀ 𝑘 ∈ 𝑉 ∀ 𝑙 ∈ ( 𝑉 ∖ { 𝑘 } ) ∃! 𝑥 ∈ 𝑉 { { 𝑥 , 𝑘 } , { 𝑥 , 𝑙 } } ⊆ 𝐸 ) ) |
27 |
15 26
|
syl6bi |
⊢ ( 𝑔 = 𝐺 → ( ( 𝑣 = ( Vtx ‘ 𝑔 ) ∧ 𝑒 = ( Edg ‘ 𝑔 ) ) → ( ∀ 𝑘 ∈ 𝑣 ∀ 𝑙 ∈ ( 𝑣 ∖ { 𝑘 } ) ∃! 𝑥 ∈ 𝑣 { { 𝑥 , 𝑘 } , { 𝑥 , 𝑙 } } ⊆ 𝑒 ↔ ∀ 𝑘 ∈ 𝑉 ∀ 𝑙 ∈ ( 𝑉 ∖ { 𝑘 } ) ∃! 𝑥 ∈ 𝑉 { { 𝑥 , 𝑘 } , { 𝑥 , 𝑙 } } ⊆ 𝐸 ) ) ) |
28 |
3 4 27
|
sbc2iedv |
⊢ ( 𝑔 = 𝐺 → ( [ ( Vtx ‘ 𝑔 ) / 𝑣 ] [ ( Edg ‘ 𝑔 ) / 𝑒 ] ∀ 𝑘 ∈ 𝑣 ∀ 𝑙 ∈ ( 𝑣 ∖ { 𝑘 } ) ∃! 𝑥 ∈ 𝑣 { { 𝑥 , 𝑘 } , { 𝑥 , 𝑙 } } ⊆ 𝑒 ↔ ∀ 𝑘 ∈ 𝑉 ∀ 𝑙 ∈ ( 𝑉 ∖ { 𝑘 } ) ∃! 𝑥 ∈ 𝑉 { { 𝑥 , 𝑘 } , { 𝑥 , 𝑙 } } ⊆ 𝐸 ) ) |
29 |
|
df-frgr |
⊢ FriendGraph = { 𝑔 ∈ USGraph ∣ [ ( Vtx ‘ 𝑔 ) / 𝑣 ] [ ( Edg ‘ 𝑔 ) / 𝑒 ] ∀ 𝑘 ∈ 𝑣 ∀ 𝑙 ∈ ( 𝑣 ∖ { 𝑘 } ) ∃! 𝑥 ∈ 𝑣 { { 𝑥 , 𝑘 } , { 𝑥 , 𝑙 } } ⊆ 𝑒 } |
30 |
28 29
|
elrab2 |
⊢ ( 𝐺 ∈ FriendGraph ↔ ( 𝐺 ∈ USGraph ∧ ∀ 𝑘 ∈ 𝑉 ∀ 𝑙 ∈ ( 𝑉 ∖ { 𝑘 } ) ∃! 𝑥 ∈ 𝑉 { { 𝑥 , 𝑘 } , { 𝑥 , 𝑙 } } ⊆ 𝐸 ) ) |