| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isfrgr.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | isfrgr.e | ⊢ 𝐸  =  ( Edg ‘ 𝐺 ) | 
						
							| 3 |  | fvex | ⊢ ( Vtx ‘ 𝑔 )  ∈  V | 
						
							| 4 |  | fvex | ⊢ ( Edg ‘ 𝑔 )  ∈  V | 
						
							| 5 |  | fveq2 | ⊢ ( 𝑔  =  𝐺  →  ( Vtx ‘ 𝑔 )  =  ( Vtx ‘ 𝐺 ) ) | 
						
							| 6 | 5 | eqeq2d | ⊢ ( 𝑔  =  𝐺  →  ( 𝑣  =  ( Vtx ‘ 𝑔 )  ↔  𝑣  =  ( Vtx ‘ 𝐺 ) ) ) | 
						
							| 7 | 1 | eqcomi | ⊢ ( Vtx ‘ 𝐺 )  =  𝑉 | 
						
							| 8 | 7 | eqeq2i | ⊢ ( 𝑣  =  ( Vtx ‘ 𝐺 )  ↔  𝑣  =  𝑉 ) | 
						
							| 9 | 6 8 | bitrdi | ⊢ ( 𝑔  =  𝐺  →  ( 𝑣  =  ( Vtx ‘ 𝑔 )  ↔  𝑣  =  𝑉 ) ) | 
						
							| 10 |  | fveq2 | ⊢ ( 𝑔  =  𝐺  →  ( Edg ‘ 𝑔 )  =  ( Edg ‘ 𝐺 ) ) | 
						
							| 11 | 10 | eqeq2d | ⊢ ( 𝑔  =  𝐺  →  ( 𝑒  =  ( Edg ‘ 𝑔 )  ↔  𝑒  =  ( Edg ‘ 𝐺 ) ) ) | 
						
							| 12 | 2 | eqcomi | ⊢ ( Edg ‘ 𝐺 )  =  𝐸 | 
						
							| 13 | 12 | eqeq2i | ⊢ ( 𝑒  =  ( Edg ‘ 𝐺 )  ↔  𝑒  =  𝐸 ) | 
						
							| 14 | 11 13 | bitrdi | ⊢ ( 𝑔  =  𝐺  →  ( 𝑒  =  ( Edg ‘ 𝑔 )  ↔  𝑒  =  𝐸 ) ) | 
						
							| 15 | 9 14 | anbi12d | ⊢ ( 𝑔  =  𝐺  →  ( ( 𝑣  =  ( Vtx ‘ 𝑔 )  ∧  𝑒  =  ( Edg ‘ 𝑔 ) )  ↔  ( 𝑣  =  𝑉  ∧  𝑒  =  𝐸 ) ) ) | 
						
							| 16 |  | simpl | ⊢ ( ( 𝑣  =  𝑉  ∧  𝑒  =  𝐸 )  →  𝑣  =  𝑉 ) | 
						
							| 17 |  | difeq1 | ⊢ ( 𝑣  =  𝑉  →  ( 𝑣  ∖  { 𝑘 } )  =  ( 𝑉  ∖  { 𝑘 } ) ) | 
						
							| 18 | 17 | adantr | ⊢ ( ( 𝑣  =  𝑉  ∧  𝑒  =  𝐸 )  →  ( 𝑣  ∖  { 𝑘 } )  =  ( 𝑉  ∖  { 𝑘 } ) ) | 
						
							| 19 |  | reueq1 | ⊢ ( 𝑣  =  𝑉  →  ( ∃! 𝑥  ∈  𝑣 { { 𝑥 ,  𝑘 } ,  { 𝑥 ,  𝑙 } }  ⊆  𝑒  ↔  ∃! 𝑥  ∈  𝑉 { { 𝑥 ,  𝑘 } ,  { 𝑥 ,  𝑙 } }  ⊆  𝑒 ) ) | 
						
							| 20 | 19 | adantr | ⊢ ( ( 𝑣  =  𝑉  ∧  𝑒  =  𝐸 )  →  ( ∃! 𝑥  ∈  𝑣 { { 𝑥 ,  𝑘 } ,  { 𝑥 ,  𝑙 } }  ⊆  𝑒  ↔  ∃! 𝑥  ∈  𝑉 { { 𝑥 ,  𝑘 } ,  { 𝑥 ,  𝑙 } }  ⊆  𝑒 ) ) | 
						
							| 21 |  | sseq2 | ⊢ ( 𝑒  =  𝐸  →  ( { { 𝑥 ,  𝑘 } ,  { 𝑥 ,  𝑙 } }  ⊆  𝑒  ↔  { { 𝑥 ,  𝑘 } ,  { 𝑥 ,  𝑙 } }  ⊆  𝐸 ) ) | 
						
							| 22 | 21 | adantl | ⊢ ( ( 𝑣  =  𝑉  ∧  𝑒  =  𝐸 )  →  ( { { 𝑥 ,  𝑘 } ,  { 𝑥 ,  𝑙 } }  ⊆  𝑒  ↔  { { 𝑥 ,  𝑘 } ,  { 𝑥 ,  𝑙 } }  ⊆  𝐸 ) ) | 
						
							| 23 | 22 | reubidv | ⊢ ( ( 𝑣  =  𝑉  ∧  𝑒  =  𝐸 )  →  ( ∃! 𝑥  ∈  𝑉 { { 𝑥 ,  𝑘 } ,  { 𝑥 ,  𝑙 } }  ⊆  𝑒  ↔  ∃! 𝑥  ∈  𝑉 { { 𝑥 ,  𝑘 } ,  { 𝑥 ,  𝑙 } }  ⊆  𝐸 ) ) | 
						
							| 24 | 20 23 | bitrd | ⊢ ( ( 𝑣  =  𝑉  ∧  𝑒  =  𝐸 )  →  ( ∃! 𝑥  ∈  𝑣 { { 𝑥 ,  𝑘 } ,  { 𝑥 ,  𝑙 } }  ⊆  𝑒  ↔  ∃! 𝑥  ∈  𝑉 { { 𝑥 ,  𝑘 } ,  { 𝑥 ,  𝑙 } }  ⊆  𝐸 ) ) | 
						
							| 25 | 18 24 | raleqbidv | ⊢ ( ( 𝑣  =  𝑉  ∧  𝑒  =  𝐸 )  →  ( ∀ 𝑙  ∈  ( 𝑣  ∖  { 𝑘 } ) ∃! 𝑥  ∈  𝑣 { { 𝑥 ,  𝑘 } ,  { 𝑥 ,  𝑙 } }  ⊆  𝑒  ↔  ∀ 𝑙  ∈  ( 𝑉  ∖  { 𝑘 } ) ∃! 𝑥  ∈  𝑉 { { 𝑥 ,  𝑘 } ,  { 𝑥 ,  𝑙 } }  ⊆  𝐸 ) ) | 
						
							| 26 | 16 25 | raleqbidv | ⊢ ( ( 𝑣  =  𝑉  ∧  𝑒  =  𝐸 )  →  ( ∀ 𝑘  ∈  𝑣 ∀ 𝑙  ∈  ( 𝑣  ∖  { 𝑘 } ) ∃! 𝑥  ∈  𝑣 { { 𝑥 ,  𝑘 } ,  { 𝑥 ,  𝑙 } }  ⊆  𝑒  ↔  ∀ 𝑘  ∈  𝑉 ∀ 𝑙  ∈  ( 𝑉  ∖  { 𝑘 } ) ∃! 𝑥  ∈  𝑉 { { 𝑥 ,  𝑘 } ,  { 𝑥 ,  𝑙 } }  ⊆  𝐸 ) ) | 
						
							| 27 | 15 26 | biimtrdi | ⊢ ( 𝑔  =  𝐺  →  ( ( 𝑣  =  ( Vtx ‘ 𝑔 )  ∧  𝑒  =  ( Edg ‘ 𝑔 ) )  →  ( ∀ 𝑘  ∈  𝑣 ∀ 𝑙  ∈  ( 𝑣  ∖  { 𝑘 } ) ∃! 𝑥  ∈  𝑣 { { 𝑥 ,  𝑘 } ,  { 𝑥 ,  𝑙 } }  ⊆  𝑒  ↔  ∀ 𝑘  ∈  𝑉 ∀ 𝑙  ∈  ( 𝑉  ∖  { 𝑘 } ) ∃! 𝑥  ∈  𝑉 { { 𝑥 ,  𝑘 } ,  { 𝑥 ,  𝑙 } }  ⊆  𝐸 ) ) ) | 
						
							| 28 | 3 4 27 | sbc2iedv | ⊢ ( 𝑔  =  𝐺  →  ( [ ( Vtx ‘ 𝑔 )  /  𝑣 ] [ ( Edg ‘ 𝑔 )  /  𝑒 ] ∀ 𝑘  ∈  𝑣 ∀ 𝑙  ∈  ( 𝑣  ∖  { 𝑘 } ) ∃! 𝑥  ∈  𝑣 { { 𝑥 ,  𝑘 } ,  { 𝑥 ,  𝑙 } }  ⊆  𝑒  ↔  ∀ 𝑘  ∈  𝑉 ∀ 𝑙  ∈  ( 𝑉  ∖  { 𝑘 } ) ∃! 𝑥  ∈  𝑉 { { 𝑥 ,  𝑘 } ,  { 𝑥 ,  𝑙 } }  ⊆  𝐸 ) ) | 
						
							| 29 |  | df-frgr | ⊢  FriendGraph   =  { 𝑔  ∈  USGraph  ∣  [ ( Vtx ‘ 𝑔 )  /  𝑣 ] [ ( Edg ‘ 𝑔 )  /  𝑒 ] ∀ 𝑘  ∈  𝑣 ∀ 𝑙  ∈  ( 𝑣  ∖  { 𝑘 } ) ∃! 𝑥  ∈  𝑣 { { 𝑥 ,  𝑘 } ,  { 𝑥 ,  𝑙 } }  ⊆  𝑒 } | 
						
							| 30 | 28 29 | elrab2 | ⊢ ( 𝐺  ∈   FriendGraph   ↔  ( 𝐺  ∈  USGraph  ∧  ∀ 𝑘  ∈  𝑉 ∀ 𝑙  ∈  ( 𝑉  ∖  { 𝑘 } ) ∃! 𝑥  ∈  𝑉 { { 𝑥 ,  𝑘 } ,  { 𝑥 ,  𝑙 } }  ⊆  𝐸 ) ) |