Description: Deduction form of isfsupp . (Contributed by SN, 29-Jul-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isfsuppd.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝑉 ) | |
| isfsuppd.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝑊 ) | ||
| isfsuppd.1 | ⊢ ( 𝜑 → Fun 𝑅 ) | ||
| isfsuppd.2 | ⊢ ( 𝜑 → ( 𝑅 supp 𝑍 ) ∈ Fin ) | ||
| Assertion | isfsuppd | ⊢ ( 𝜑 → 𝑅 finSupp 𝑍 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfsuppd.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝑉 ) | |
| 2 | isfsuppd.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝑊 ) | |
| 3 | isfsuppd.1 | ⊢ ( 𝜑 → Fun 𝑅 ) | |
| 4 | isfsuppd.2 | ⊢ ( 𝜑 → ( 𝑅 supp 𝑍 ) ∈ Fin ) | |
| 5 | isfsupp | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( 𝑅 finSupp 𝑍 ↔ ( Fun 𝑅 ∧ ( 𝑅 supp 𝑍 ) ∈ Fin ) ) ) | |
| 6 | 1 2 5 | syl2anc | ⊢ ( 𝜑 → ( 𝑅 finSupp 𝑍 ↔ ( Fun 𝑅 ∧ ( 𝑅 supp 𝑍 ) ∈ Fin ) ) ) |
| 7 | 3 4 6 | mpbir2and | ⊢ ( 𝜑 → 𝑅 finSupp 𝑍 ) |