Step |
Hyp |
Ref |
Expression |
1 |
|
isfth.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
2 |
|
isfth.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
3 |
|
isfth.j |
⊢ 𝐽 = ( Hom ‘ 𝐷 ) |
4 |
1
|
isfth |
⊢ ( 𝐹 ( 𝐶 Faith 𝐷 ) 𝐺 ↔ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 Fun ◡ ( 𝑥 𝐺 𝑦 ) ) ) |
5 |
|
simpll |
⊢ ( ( ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) |
6 |
|
simplr |
⊢ ( ( ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) |
7 |
|
simpr |
⊢ ( ( ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ 𝐵 ) |
8 |
1 2 3 5 6 7
|
funcf2 |
⊢ ( ( ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) |
9 |
|
df-f1 |
⊢ ( ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –1-1→ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ↔ ( ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ∧ Fun ◡ ( 𝑥 𝐺 𝑦 ) ) ) |
10 |
9
|
baib |
⊢ ( ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) → ( ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –1-1→ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ↔ Fun ◡ ( 𝑥 𝐺 𝑦 ) ) ) |
11 |
8 10
|
syl |
⊢ ( ( ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –1-1→ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ↔ Fun ◡ ( 𝑥 𝐺 𝑦 ) ) ) |
12 |
11
|
ralbidva |
⊢ ( ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∧ 𝑥 ∈ 𝐵 ) → ( ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –1-1→ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ 𝐵 Fun ◡ ( 𝑥 𝐺 𝑦 ) ) ) |
13 |
12
|
ralbidva |
⊢ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –1-1→ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 Fun ◡ ( 𝑥 𝐺 𝑦 ) ) ) |
14 |
13
|
pm5.32i |
⊢ ( ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –1-1→ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) ↔ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 Fun ◡ ( 𝑥 𝐺 𝑦 ) ) ) |
15 |
4 14
|
bitr4i |
⊢ ( 𝐹 ( 𝐶 Faith 𝐷 ) 𝐺 ↔ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –1-1→ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) ) |