Step |
Hyp |
Ref |
Expression |
1 |
|
isfunc.b |
⊢ 𝐵 = ( Base ‘ 𝐷 ) |
2 |
|
isfunc.c |
⊢ 𝐶 = ( Base ‘ 𝐸 ) |
3 |
|
isfunc.h |
⊢ 𝐻 = ( Hom ‘ 𝐷 ) |
4 |
|
isfunc.j |
⊢ 𝐽 = ( Hom ‘ 𝐸 ) |
5 |
|
isfunc.1 |
⊢ 1 = ( Id ‘ 𝐷 ) |
6 |
|
isfunc.i |
⊢ 𝐼 = ( Id ‘ 𝐸 ) |
7 |
|
isfunc.x |
⊢ · = ( comp ‘ 𝐷 ) |
8 |
|
isfunc.o |
⊢ 𝑂 = ( comp ‘ 𝐸 ) |
9 |
|
isfunc.d |
⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
10 |
|
isfunc.e |
⊢ ( 𝜑 → 𝐸 ∈ Cat ) |
11 |
|
fvexd |
⊢ ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) → ( Base ‘ 𝑑 ) ∈ V ) |
12 |
|
simpl |
⊢ ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) → 𝑑 = 𝐷 ) |
13 |
12
|
fveq2d |
⊢ ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) → ( Base ‘ 𝑑 ) = ( Base ‘ 𝐷 ) ) |
14 |
13 1
|
eqtr4di |
⊢ ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) → ( Base ‘ 𝑑 ) = 𝐵 ) |
15 |
|
simpr |
⊢ ( ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) ∧ 𝑏 = 𝐵 ) → 𝑏 = 𝐵 ) |
16 |
|
simplr |
⊢ ( ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) ∧ 𝑏 = 𝐵 ) → 𝑒 = 𝐸 ) |
17 |
16
|
fveq2d |
⊢ ( ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) ∧ 𝑏 = 𝐵 ) → ( Base ‘ 𝑒 ) = ( Base ‘ 𝐸 ) ) |
18 |
17 2
|
eqtr4di |
⊢ ( ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) ∧ 𝑏 = 𝐵 ) → ( Base ‘ 𝑒 ) = 𝐶 ) |
19 |
15 18
|
feq23d |
⊢ ( ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) ∧ 𝑏 = 𝐵 ) → ( 𝑓 : 𝑏 ⟶ ( Base ‘ 𝑒 ) ↔ 𝑓 : 𝐵 ⟶ 𝐶 ) ) |
20 |
2
|
fvexi |
⊢ 𝐶 ∈ V |
21 |
1
|
fvexi |
⊢ 𝐵 ∈ V |
22 |
20 21
|
elmap |
⊢ ( 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ↔ 𝑓 : 𝐵 ⟶ 𝐶 ) |
23 |
19 22
|
bitr4di |
⊢ ( ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) ∧ 𝑏 = 𝐵 ) → ( 𝑓 : 𝑏 ⟶ ( Base ‘ 𝑒 ) ↔ 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ) ) |
24 |
15
|
sqxpeqd |
⊢ ( ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) ∧ 𝑏 = 𝐵 ) → ( 𝑏 × 𝑏 ) = ( 𝐵 × 𝐵 ) ) |
25 |
24
|
ixpeq1d |
⊢ ( ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) ∧ 𝑏 = 𝐵 ) → X 𝑧 ∈ ( 𝑏 × 𝑏 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝑒 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝑑 ) ‘ 𝑧 ) ) = X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝑒 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝑑 ) ‘ 𝑧 ) ) ) |
26 |
16
|
fveq2d |
⊢ ( ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) ∧ 𝑏 = 𝐵 ) → ( Hom ‘ 𝑒 ) = ( Hom ‘ 𝐸 ) ) |
27 |
26 4
|
eqtr4di |
⊢ ( ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) ∧ 𝑏 = 𝐵 ) → ( Hom ‘ 𝑒 ) = 𝐽 ) |
28 |
27
|
oveqd |
⊢ ( ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) ∧ 𝑏 = 𝐵 ) → ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝑒 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) = ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ) |
29 |
|
simpll |
⊢ ( ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) ∧ 𝑏 = 𝐵 ) → 𝑑 = 𝐷 ) |
30 |
29
|
fveq2d |
⊢ ( ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) ∧ 𝑏 = 𝐵 ) → ( Hom ‘ 𝑑 ) = ( Hom ‘ 𝐷 ) ) |
31 |
30 3
|
eqtr4di |
⊢ ( ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) ∧ 𝑏 = 𝐵 ) → ( Hom ‘ 𝑑 ) = 𝐻 ) |
32 |
31
|
fveq1d |
⊢ ( ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) ∧ 𝑏 = 𝐵 ) → ( ( Hom ‘ 𝑑 ) ‘ 𝑧 ) = ( 𝐻 ‘ 𝑧 ) ) |
33 |
28 32
|
oveq12d |
⊢ ( ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) ∧ 𝑏 = 𝐵 ) → ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝑒 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝑑 ) ‘ 𝑧 ) ) = ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ) |
34 |
33
|
ixpeq2dv |
⊢ ( ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) ∧ 𝑏 = 𝐵 ) → X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝑒 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝑑 ) ‘ 𝑧 ) ) = X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ) |
35 |
25 34
|
eqtrd |
⊢ ( ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) ∧ 𝑏 = 𝐵 ) → X 𝑧 ∈ ( 𝑏 × 𝑏 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝑒 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝑑 ) ‘ 𝑧 ) ) = X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ) |
36 |
35
|
eleq2d |
⊢ ( ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) ∧ 𝑏 = 𝐵 ) → ( 𝑔 ∈ X 𝑧 ∈ ( 𝑏 × 𝑏 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝑒 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝑑 ) ‘ 𝑧 ) ) ↔ 𝑔 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ) ) |
37 |
29
|
fveq2d |
⊢ ( ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) ∧ 𝑏 = 𝐵 ) → ( Id ‘ 𝑑 ) = ( Id ‘ 𝐷 ) ) |
38 |
37 5
|
eqtr4di |
⊢ ( ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) ∧ 𝑏 = 𝐵 ) → ( Id ‘ 𝑑 ) = 1 ) |
39 |
38
|
fveq1d |
⊢ ( ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) ∧ 𝑏 = 𝐵 ) → ( ( Id ‘ 𝑑 ) ‘ 𝑥 ) = ( 1 ‘ 𝑥 ) ) |
40 |
39
|
fveq2d |
⊢ ( ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) ∧ 𝑏 = 𝐵 ) → ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝑑 ) ‘ 𝑥 ) ) = ( ( 𝑥 𝑔 𝑥 ) ‘ ( 1 ‘ 𝑥 ) ) ) |
41 |
16
|
fveq2d |
⊢ ( ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) ∧ 𝑏 = 𝐵 ) → ( Id ‘ 𝑒 ) = ( Id ‘ 𝐸 ) ) |
42 |
41 6
|
eqtr4di |
⊢ ( ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) ∧ 𝑏 = 𝐵 ) → ( Id ‘ 𝑒 ) = 𝐼 ) |
43 |
42
|
fveq1d |
⊢ ( ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) ∧ 𝑏 = 𝐵 ) → ( ( Id ‘ 𝑒 ) ‘ ( 𝑓 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝑓 ‘ 𝑥 ) ) ) |
44 |
40 43
|
eqeq12d |
⊢ ( ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) ∧ 𝑏 = 𝐵 ) → ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝑑 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝑒 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ↔ ( ( 𝑥 𝑔 𝑥 ) ‘ ( 1 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) |
45 |
31
|
oveqd |
⊢ ( ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) ∧ 𝑏 = 𝐵 ) → ( 𝑥 ( Hom ‘ 𝑑 ) 𝑦 ) = ( 𝑥 𝐻 𝑦 ) ) |
46 |
31
|
oveqd |
⊢ ( ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) ∧ 𝑏 = 𝐵 ) → ( 𝑦 ( Hom ‘ 𝑑 ) 𝑧 ) = ( 𝑦 𝐻 𝑧 ) ) |
47 |
29
|
fveq2d |
⊢ ( ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) ∧ 𝑏 = 𝐵 ) → ( comp ‘ 𝑑 ) = ( comp ‘ 𝐷 ) ) |
48 |
47 7
|
eqtr4di |
⊢ ( ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) ∧ 𝑏 = 𝐵 ) → ( comp ‘ 𝑑 ) = · ) |
49 |
48
|
oveqd |
⊢ ( ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) ∧ 𝑏 = 𝐵 ) → ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑑 ) 𝑧 ) = ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) ) |
50 |
49
|
oveqd |
⊢ ( ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) ∧ 𝑏 = 𝐵 ) → ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑑 ) 𝑧 ) 𝑚 ) = ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) |
51 |
50
|
fveq2d |
⊢ ( ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) ∧ 𝑏 = 𝐵 ) → ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑑 ) 𝑧 ) 𝑚 ) ) = ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) ) |
52 |
16
|
fveq2d |
⊢ ( ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) ∧ 𝑏 = 𝐵 ) → ( comp ‘ 𝑒 ) = ( comp ‘ 𝐸 ) ) |
53 |
52 8
|
eqtr4di |
⊢ ( ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) ∧ 𝑏 = 𝐵 ) → ( comp ‘ 𝑒 ) = 𝑂 ) |
54 |
53
|
oveqd |
⊢ ( ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) ∧ 𝑏 = 𝐵 ) → ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝑒 ) ( 𝑓 ‘ 𝑧 ) ) = ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 𝑂 ( 𝑓 ‘ 𝑧 ) ) ) |
55 |
54
|
oveqd |
⊢ ( ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) ∧ 𝑏 = 𝐵 ) → ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝑒 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 𝑂 ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) |
56 |
51 55
|
eqeq12d |
⊢ ( ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) ∧ 𝑏 = 𝐵 ) → ( ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑑 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝑒 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ↔ ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 𝑂 ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) |
57 |
46 56
|
raleqbidv |
⊢ ( ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) ∧ 𝑏 = 𝐵 ) → ( ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝑑 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑑 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝑒 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ↔ ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 𝑂 ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) |
58 |
45 57
|
raleqbidv |
⊢ ( ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) ∧ 𝑏 = 𝐵 ) → ( ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝑑 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝑑 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑑 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝑒 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ↔ ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 𝑂 ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) |
59 |
15 58
|
raleqbidv |
⊢ ( ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) ∧ 𝑏 = 𝐵 ) → ( ∀ 𝑧 ∈ 𝑏 ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝑑 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝑑 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑑 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝑒 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ↔ ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 𝑂 ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) |
60 |
15 59
|
raleqbidv |
⊢ ( ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) ∧ 𝑏 = 𝐵 ) → ( ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝑑 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝑑 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑑 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝑒 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ↔ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 𝑂 ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) |
61 |
44 60
|
anbi12d |
⊢ ( ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) ∧ 𝑏 = 𝐵 ) → ( ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝑑 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝑒 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝑑 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝑑 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑑 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝑒 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ↔ ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( 1 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 𝑂 ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) ) |
62 |
15 61
|
raleqbidv |
⊢ ( ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) ∧ 𝑏 = 𝐵 ) → ( ∀ 𝑥 ∈ 𝑏 ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝑑 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝑒 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝑑 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝑑 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑑 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝑒 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ↔ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( 1 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 𝑂 ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) ) |
63 |
23 36 62
|
3anbi123d |
⊢ ( ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) ∧ 𝑏 = 𝐵 ) → ( ( 𝑓 : 𝑏 ⟶ ( Base ‘ 𝑒 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( 𝑏 × 𝑏 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝑒 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝑑 ) ‘ 𝑧 ) ) ∧ ∀ 𝑥 ∈ 𝑏 ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝑑 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝑒 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝑑 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝑑 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑑 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝑒 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) ↔ ( 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( 1 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 𝑂 ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) ) ) |
64 |
|
df-3an |
⊢ ( ( 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( 1 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 𝑂 ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) ↔ ( ( 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( 1 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 𝑂 ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) ) |
65 |
63 64
|
bitrdi |
⊢ ( ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) ∧ 𝑏 = 𝐵 ) → ( ( 𝑓 : 𝑏 ⟶ ( Base ‘ 𝑒 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( 𝑏 × 𝑏 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝑒 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝑑 ) ‘ 𝑧 ) ) ∧ ∀ 𝑥 ∈ 𝑏 ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝑑 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝑒 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝑑 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝑑 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑑 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝑒 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) ↔ ( ( 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( 1 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 𝑂 ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) ) ) |
66 |
11 14 65
|
sbcied2 |
⊢ ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) → ( [ ( Base ‘ 𝑑 ) / 𝑏 ] ( 𝑓 : 𝑏 ⟶ ( Base ‘ 𝑒 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( 𝑏 × 𝑏 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝑒 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝑑 ) ‘ 𝑧 ) ) ∧ ∀ 𝑥 ∈ 𝑏 ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝑑 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝑒 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝑑 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝑑 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑑 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝑒 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) ↔ ( ( 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( 1 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 𝑂 ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) ) ) |
67 |
66
|
opabbidv |
⊢ ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) → { 〈 𝑓 , 𝑔 〉 ∣ [ ( Base ‘ 𝑑 ) / 𝑏 ] ( 𝑓 : 𝑏 ⟶ ( Base ‘ 𝑒 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( 𝑏 × 𝑏 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝑒 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝑑 ) ‘ 𝑧 ) ) ∧ ∀ 𝑥 ∈ 𝑏 ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝑑 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝑒 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝑑 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝑑 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑑 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝑒 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) } = { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( 1 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 𝑂 ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) } ) |
68 |
|
df-func |
⊢ Func = ( 𝑑 ∈ Cat , 𝑒 ∈ Cat ↦ { 〈 𝑓 , 𝑔 〉 ∣ [ ( Base ‘ 𝑑 ) / 𝑏 ] ( 𝑓 : 𝑏 ⟶ ( Base ‘ 𝑒 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( 𝑏 × 𝑏 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝑒 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝑑 ) ‘ 𝑧 ) ) ∧ ∀ 𝑥 ∈ 𝑏 ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝑑 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝑒 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝑑 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝑑 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑑 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝑒 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) } ) |
69 |
|
ovex |
⊢ ( 𝐶 ↑m 𝐵 ) ∈ V |
70 |
|
snex |
⊢ { 𝑓 } ∈ V |
71 |
|
ovex |
⊢ ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ∈ V |
72 |
71
|
rgenw |
⊢ ∀ 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ∈ V |
73 |
|
ixpexg |
⊢ ( ∀ 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ∈ V → X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ∈ V ) |
74 |
72 73
|
ax-mp |
⊢ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ∈ V |
75 |
70 74
|
xpex |
⊢ ( { 𝑓 } × X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ) ∈ V |
76 |
69 75
|
iunex |
⊢ ∪ 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ( { 𝑓 } × X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ) ∈ V |
77 |
|
simpl |
⊢ ( ( ( 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( 1 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 𝑂 ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) → ( 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ) ) |
78 |
77
|
anim2i |
⊢ ( ( 𝑑 = 〈 𝑓 , 𝑔 〉 ∧ ( ( 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( 1 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 𝑂 ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) ) → ( 𝑑 = 〈 𝑓 , 𝑔 〉 ∧ ( 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ) ) ) |
79 |
78
|
2eximi |
⊢ ( ∃ 𝑓 ∃ 𝑔 ( 𝑑 = 〈 𝑓 , 𝑔 〉 ∧ ( ( 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( 1 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 𝑂 ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) ) → ∃ 𝑓 ∃ 𝑔 ( 𝑑 = 〈 𝑓 , 𝑔 〉 ∧ ( 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ) ) ) |
80 |
|
elopab |
⊢ ( 𝑑 ∈ { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( 1 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 𝑂 ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) } ↔ ∃ 𝑓 ∃ 𝑔 ( 𝑑 = 〈 𝑓 , 𝑔 〉 ∧ ( ( 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( 1 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 𝑂 ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) ) ) |
81 |
|
eliunxp |
⊢ ( 𝑑 ∈ ∪ 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ( { 𝑓 } × X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ) ↔ ∃ 𝑓 ∃ 𝑔 ( 𝑑 = 〈 𝑓 , 𝑔 〉 ∧ ( 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ) ) ) |
82 |
79 80 81
|
3imtr4i |
⊢ ( 𝑑 ∈ { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( 1 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 𝑂 ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) } → 𝑑 ∈ ∪ 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ( { 𝑓 } × X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ) ) |
83 |
82
|
ssriv |
⊢ { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( 1 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 𝑂 ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) } ⊆ ∪ 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ( { 𝑓 } × X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ) |
84 |
76 83
|
ssexi |
⊢ { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( 1 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 𝑂 ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) } ∈ V |
85 |
67 68 84
|
ovmpoa |
⊢ ( ( 𝐷 ∈ Cat ∧ 𝐸 ∈ Cat ) → ( 𝐷 Func 𝐸 ) = { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( 1 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 𝑂 ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) } ) |
86 |
9 10 85
|
syl2anc |
⊢ ( 𝜑 → ( 𝐷 Func 𝐸 ) = { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( 1 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 𝑂 ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) } ) |
87 |
86
|
breqd |
⊢ ( 𝜑 → ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ↔ 𝐹 { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( 1 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 𝑂 ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) } 𝐺 ) ) |
88 |
|
brabv |
⊢ ( 𝐹 { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( 1 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 𝑂 ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) } 𝐺 → ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ) |
89 |
|
elex |
⊢ ( 𝐹 ∈ ( 𝐶 ↑m 𝐵 ) → 𝐹 ∈ V ) |
90 |
|
elex |
⊢ ( 𝐺 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) → 𝐺 ∈ V ) |
91 |
89 90
|
anim12i |
⊢ ( ( 𝐹 ∈ ( 𝐶 ↑m 𝐵 ) ∧ 𝐺 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ) → ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ) |
92 |
91
|
3adant3 |
⊢ ( ( 𝐹 ∈ ( 𝐶 ↑m 𝐵 ) ∧ 𝐺 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑥 𝐺 𝑥 ) ‘ ( 1 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝐺 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝐺 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 𝑂 ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑚 ) ) ) ) → ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ) |
93 |
|
simpl |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → 𝑓 = 𝐹 ) |
94 |
93
|
eleq1d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ↔ 𝐹 ∈ ( 𝐶 ↑m 𝐵 ) ) ) |
95 |
|
simpr |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → 𝑔 = 𝐺 ) |
96 |
93
|
fveq1d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) = ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) ) |
97 |
93
|
fveq1d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) = ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) |
98 |
96 97
|
oveq12d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) = ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) ) |
99 |
98
|
oveq1d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) = ( ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ) |
100 |
99
|
ixpeq2dv |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) = X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ) |
101 |
95 100
|
eleq12d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( 𝑔 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ↔ 𝐺 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ) ) |
102 |
95
|
oveqd |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( 𝑥 𝑔 𝑥 ) = ( 𝑥 𝐺 𝑥 ) ) |
103 |
102
|
fveq1d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( ( 𝑥 𝑔 𝑥 ) ‘ ( 1 ‘ 𝑥 ) ) = ( ( 𝑥 𝐺 𝑥 ) ‘ ( 1 ‘ 𝑥 ) ) ) |
104 |
93
|
fveq1d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( 𝑓 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
105 |
104
|
fveq2d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( 𝐼 ‘ ( 𝑓 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
106 |
103 105
|
eqeq12d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( 1 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝑓 ‘ 𝑥 ) ) ↔ ( ( 𝑥 𝐺 𝑥 ) ‘ ( 1 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) |
107 |
95
|
oveqd |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( 𝑥 𝑔 𝑧 ) = ( 𝑥 𝐺 𝑧 ) ) |
108 |
107
|
fveq1d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( 𝑥 𝐺 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) ) |
109 |
93
|
fveq1d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( 𝑓 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
110 |
104 109
|
opeq12d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 = 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ) |
111 |
93
|
fveq1d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( 𝑓 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) |
112 |
110 111
|
oveq12d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 𝑂 ( 𝑓 ‘ 𝑧 ) ) = ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 𝑂 ( 𝐹 ‘ 𝑧 ) ) ) |
113 |
95
|
oveqd |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( 𝑦 𝑔 𝑧 ) = ( 𝑦 𝐺 𝑧 ) ) |
114 |
113
|
fveq1d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) = ( ( 𝑦 𝐺 𝑧 ) ‘ 𝑛 ) ) |
115 |
95
|
oveqd |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( 𝑥 𝑔 𝑦 ) = ( 𝑥 𝐺 𝑦 ) ) |
116 |
115
|
fveq1d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) = ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑚 ) ) |
117 |
112 114 116
|
oveq123d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 𝑂 ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) = ( ( ( 𝑦 𝐺 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 𝑂 ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑚 ) ) ) |
118 |
108 117
|
eqeq12d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 𝑂 ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ↔ ( ( 𝑥 𝐺 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝐺 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 𝑂 ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑚 ) ) ) ) |
119 |
118
|
2ralbidv |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 𝑂 ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ↔ ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝐺 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝐺 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 𝑂 ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑚 ) ) ) ) |
120 |
119
|
2ralbidv |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 𝑂 ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ↔ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝐺 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝐺 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 𝑂 ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑚 ) ) ) ) |
121 |
106 120
|
anbi12d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( 1 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 𝑂 ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ↔ ( ( ( 𝑥 𝐺 𝑥 ) ‘ ( 1 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝐺 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝐺 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 𝑂 ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑚 ) ) ) ) ) |
122 |
121
|
ralbidv |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( 1 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 𝑂 ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ↔ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑥 𝐺 𝑥 ) ‘ ( 1 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝐺 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝐺 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 𝑂 ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑚 ) ) ) ) ) |
123 |
94 101 122
|
3anbi123d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( ( 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( 1 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 𝑂 ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) ↔ ( 𝐹 ∈ ( 𝐶 ↑m 𝐵 ) ∧ 𝐺 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑥 𝐺 𝑥 ) ‘ ( 1 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝐺 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝐺 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 𝑂 ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑚 ) ) ) ) ) ) |
124 |
64 123
|
bitr3id |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( ( ( 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( 1 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 𝑂 ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) ↔ ( 𝐹 ∈ ( 𝐶 ↑m 𝐵 ) ∧ 𝐺 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑥 𝐺 𝑥 ) ‘ ( 1 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝐺 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝐺 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 𝑂 ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑚 ) ) ) ) ) ) |
125 |
|
eqid |
⊢ { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( 1 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 𝑂 ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) } = { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( 1 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 𝑂 ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) } |
126 |
124 125
|
brabga |
⊢ ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) → ( 𝐹 { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( 1 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 𝑂 ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) } 𝐺 ↔ ( 𝐹 ∈ ( 𝐶 ↑m 𝐵 ) ∧ 𝐺 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑥 𝐺 𝑥 ) ‘ ( 1 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝐺 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝐺 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 𝑂 ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑚 ) ) ) ) ) ) |
127 |
88 92 126
|
pm5.21nii |
⊢ ( 𝐹 { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( 1 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 𝑂 ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) } 𝐺 ↔ ( 𝐹 ∈ ( 𝐶 ↑m 𝐵 ) ∧ 𝐺 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑥 𝐺 𝑥 ) ‘ ( 1 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝐺 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝐺 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 𝑂 ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑚 ) ) ) ) ) |
128 |
20 21
|
elmap |
⊢ ( 𝐹 ∈ ( 𝐶 ↑m 𝐵 ) ↔ 𝐹 : 𝐵 ⟶ 𝐶 ) |
129 |
128
|
3anbi1i |
⊢ ( ( 𝐹 ∈ ( 𝐶 ↑m 𝐵 ) ∧ 𝐺 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑥 𝐺 𝑥 ) ‘ ( 1 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝐺 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝐺 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 𝑂 ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑚 ) ) ) ) ↔ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐺 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑥 𝐺 𝑥 ) ‘ ( 1 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝐺 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝐺 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 𝑂 ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑚 ) ) ) ) ) |
130 |
127 129
|
bitri |
⊢ ( 𝐹 { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( 1 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 𝑂 ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) } 𝐺 ↔ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐺 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑥 𝐺 𝑥 ) ‘ ( 1 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝐺 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝐺 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 𝑂 ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑚 ) ) ) ) ) |
131 |
87 130
|
bitrdi |
⊢ ( 𝜑 → ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ↔ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐺 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑥 𝐺 𝑥 ) ‘ ( 1 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝐺 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝐺 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 𝑂 ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑚 ) ) ) ) ) ) |