Description: The property of being a finite simple graph. (Contributed by AV, 3-Jan-2020) (Revised by AV, 21-Oct-2020)
Ref | Expression | ||
---|---|---|---|
Hypothesis | isfusgr.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
Assertion | isfusgr | ⊢ ( 𝐺 ∈ FinUSGraph ↔ ( 𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfusgr.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
2 | fveq2 | ⊢ ( 𝑔 = 𝐺 → ( Vtx ‘ 𝑔 ) = ( Vtx ‘ 𝐺 ) ) | |
3 | 2 1 | eqtr4di | ⊢ ( 𝑔 = 𝐺 → ( Vtx ‘ 𝑔 ) = 𝑉 ) |
4 | 3 | eleq1d | ⊢ ( 𝑔 = 𝐺 → ( ( Vtx ‘ 𝑔 ) ∈ Fin ↔ 𝑉 ∈ Fin ) ) |
5 | df-fusgr | ⊢ FinUSGraph = { 𝑔 ∈ USGraph ∣ ( Vtx ‘ 𝑔 ) ∈ Fin } | |
6 | 4 5 | elrab2 | ⊢ ( 𝐺 ∈ FinUSGraph ↔ ( 𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin ) ) |