Metamath Proof Explorer


Theorem isfusgr

Description: The property of being a finite simple graph. (Contributed by AV, 3-Jan-2020) (Revised by AV, 21-Oct-2020)

Ref Expression
Hypothesis isfusgr.v 𝑉 = ( Vtx ‘ 𝐺 )
Assertion isfusgr ( 𝐺 ∈ FinUSGraph ↔ ( 𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin ) )

Proof

Step Hyp Ref Expression
1 isfusgr.v 𝑉 = ( Vtx ‘ 𝐺 )
2 fveq2 ( 𝑔 = 𝐺 → ( Vtx ‘ 𝑔 ) = ( Vtx ‘ 𝐺 ) )
3 2 1 eqtr4di ( 𝑔 = 𝐺 → ( Vtx ‘ 𝑔 ) = 𝑉 )
4 3 eleq1d ( 𝑔 = 𝐺 → ( ( Vtx ‘ 𝑔 ) ∈ Fin ↔ 𝑉 ∈ Fin ) )
5 df-fusgr FinUSGraph = { 𝑔 ∈ USGraph ∣ ( Vtx ‘ 𝑔 ) ∈ Fin }
6 4 5 elrab2 ( 𝐺 ∈ FinUSGraph ↔ ( 𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin ) )