Description: The property of being a finite simple graph. (Contributed by AV, 3-Jan-2020) (Revised by AV, 21-Oct-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isfusgr.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
isfusgrf1.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | ||
Assertion | isfusgrf1 | ⊢ ( 𝐺 ∈ 𝑊 → ( 𝐺 ∈ FinUSGraph ↔ ( 𝐼 : dom 𝐼 –1-1→ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ∧ 𝑉 ∈ Fin ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfusgr.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
2 | isfusgrf1.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
3 | 1 | isfusgr | ⊢ ( 𝐺 ∈ FinUSGraph ↔ ( 𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin ) ) |
4 | 1 2 | isusgrs | ⊢ ( 𝐺 ∈ 𝑊 → ( 𝐺 ∈ USGraph ↔ 𝐼 : dom 𝐼 –1-1→ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
5 | 4 | anbi1d | ⊢ ( 𝐺 ∈ 𝑊 → ( ( 𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin ) ↔ ( 𝐼 : dom 𝐼 –1-1→ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ∧ 𝑉 ∈ Fin ) ) ) |
6 | 3 5 | syl5bb | ⊢ ( 𝐺 ∈ 𝑊 → ( 𝐺 ∈ FinUSGraph ↔ ( 𝐼 : dom 𝐼 –1-1→ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ∧ 𝑉 ∈ Fin ) ) ) |