Metamath Proof Explorer


Theorem isfusgrf1

Description: The property of being a finite simple graph. (Contributed by AV, 3-Jan-2020) (Revised by AV, 21-Oct-2020)

Ref Expression
Hypotheses isfusgr.v 𝑉 = ( Vtx ‘ 𝐺 )
isfusgrf1.i 𝐼 = ( iEdg ‘ 𝐺 )
Assertion isfusgrf1 ( 𝐺𝑊 → ( 𝐺 ∈ FinUSGraph ↔ ( 𝐼 : dom 𝐼1-1→ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ∧ 𝑉 ∈ Fin ) ) )

Proof

Step Hyp Ref Expression
1 isfusgr.v 𝑉 = ( Vtx ‘ 𝐺 )
2 isfusgrf1.i 𝐼 = ( iEdg ‘ 𝐺 )
3 1 isfusgr ( 𝐺 ∈ FinUSGraph ↔ ( 𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin ) )
4 1 2 isusgrs ( 𝐺𝑊 → ( 𝐺 ∈ USGraph ↔ 𝐼 : dom 𝐼1-1→ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) )
5 4 anbi1d ( 𝐺𝑊 → ( ( 𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin ) ↔ ( 𝐼 : dom 𝐼1-1→ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ∧ 𝑉 ∈ Fin ) ) )
6 3 5 syl5bb ( 𝐺𝑊 → ( 𝐺 ∈ FinUSGraph ↔ ( 𝐼 : dom 𝐼1-1→ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ∧ 𝑉 ∈ Fin ) ) )