Step |
Hyp |
Ref |
Expression |
1 |
|
isga.1 |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
2 |
|
isga.2 |
⊢ + = ( +g ‘ 𝐺 ) |
3 |
|
isga.3 |
⊢ 0 = ( 0g ‘ 𝐺 ) |
4 |
|
df-ga |
⊢ GrpAct = ( 𝑔 ∈ Grp , 𝑠 ∈ V ↦ ⦋ ( Base ‘ 𝑔 ) / 𝑏 ⦌ { 𝑚 ∈ ( 𝑠 ↑m ( 𝑏 × 𝑠 ) ) ∣ ∀ 𝑥 ∈ 𝑠 ( ( ( 0g ‘ 𝑔 ) 𝑚 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( ( 𝑦 ( +g ‘ 𝑔 ) 𝑧 ) 𝑚 𝑥 ) = ( 𝑦 𝑚 ( 𝑧 𝑚 𝑥 ) ) ) } ) |
5 |
4
|
elmpocl |
⊢ ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) → ( 𝐺 ∈ Grp ∧ 𝑌 ∈ V ) ) |
6 |
|
fvexd |
⊢ ( ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑌 ) → ( Base ‘ 𝑔 ) ∈ V ) |
7 |
|
simplr |
⊢ ( ( ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑌 ) ∧ 𝑏 = ( Base ‘ 𝑔 ) ) → 𝑠 = 𝑌 ) |
8 |
|
id |
⊢ ( 𝑏 = ( Base ‘ 𝑔 ) → 𝑏 = ( Base ‘ 𝑔 ) ) |
9 |
|
simpl |
⊢ ( ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑌 ) → 𝑔 = 𝐺 ) |
10 |
9
|
fveq2d |
⊢ ( ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑌 ) → ( Base ‘ 𝑔 ) = ( Base ‘ 𝐺 ) ) |
11 |
10 1
|
eqtr4di |
⊢ ( ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑌 ) → ( Base ‘ 𝑔 ) = 𝑋 ) |
12 |
8 11
|
sylan9eqr |
⊢ ( ( ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑌 ) ∧ 𝑏 = ( Base ‘ 𝑔 ) ) → 𝑏 = 𝑋 ) |
13 |
12 7
|
xpeq12d |
⊢ ( ( ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑌 ) ∧ 𝑏 = ( Base ‘ 𝑔 ) ) → ( 𝑏 × 𝑠 ) = ( 𝑋 × 𝑌 ) ) |
14 |
7 13
|
oveq12d |
⊢ ( ( ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑌 ) ∧ 𝑏 = ( Base ‘ 𝑔 ) ) → ( 𝑠 ↑m ( 𝑏 × 𝑠 ) ) = ( 𝑌 ↑m ( 𝑋 × 𝑌 ) ) ) |
15 |
|
simpll |
⊢ ( ( ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑌 ) ∧ 𝑏 = ( Base ‘ 𝑔 ) ) → 𝑔 = 𝐺 ) |
16 |
15
|
fveq2d |
⊢ ( ( ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑌 ) ∧ 𝑏 = ( Base ‘ 𝑔 ) ) → ( 0g ‘ 𝑔 ) = ( 0g ‘ 𝐺 ) ) |
17 |
16 3
|
eqtr4di |
⊢ ( ( ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑌 ) ∧ 𝑏 = ( Base ‘ 𝑔 ) ) → ( 0g ‘ 𝑔 ) = 0 ) |
18 |
17
|
oveq1d |
⊢ ( ( ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑌 ) ∧ 𝑏 = ( Base ‘ 𝑔 ) ) → ( ( 0g ‘ 𝑔 ) 𝑚 𝑥 ) = ( 0 𝑚 𝑥 ) ) |
19 |
18
|
eqeq1d |
⊢ ( ( ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑌 ) ∧ 𝑏 = ( Base ‘ 𝑔 ) ) → ( ( ( 0g ‘ 𝑔 ) 𝑚 𝑥 ) = 𝑥 ↔ ( 0 𝑚 𝑥 ) = 𝑥 ) ) |
20 |
15
|
fveq2d |
⊢ ( ( ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑌 ) ∧ 𝑏 = ( Base ‘ 𝑔 ) ) → ( +g ‘ 𝑔 ) = ( +g ‘ 𝐺 ) ) |
21 |
20 2
|
eqtr4di |
⊢ ( ( ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑌 ) ∧ 𝑏 = ( Base ‘ 𝑔 ) ) → ( +g ‘ 𝑔 ) = + ) |
22 |
21
|
oveqd |
⊢ ( ( ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑌 ) ∧ 𝑏 = ( Base ‘ 𝑔 ) ) → ( 𝑦 ( +g ‘ 𝑔 ) 𝑧 ) = ( 𝑦 + 𝑧 ) ) |
23 |
22
|
oveq1d |
⊢ ( ( ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑌 ) ∧ 𝑏 = ( Base ‘ 𝑔 ) ) → ( ( 𝑦 ( +g ‘ 𝑔 ) 𝑧 ) 𝑚 𝑥 ) = ( ( 𝑦 + 𝑧 ) 𝑚 𝑥 ) ) |
24 |
23
|
eqeq1d |
⊢ ( ( ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑌 ) ∧ 𝑏 = ( Base ‘ 𝑔 ) ) → ( ( ( 𝑦 ( +g ‘ 𝑔 ) 𝑧 ) 𝑚 𝑥 ) = ( 𝑦 𝑚 ( 𝑧 𝑚 𝑥 ) ) ↔ ( ( 𝑦 + 𝑧 ) 𝑚 𝑥 ) = ( 𝑦 𝑚 ( 𝑧 𝑚 𝑥 ) ) ) ) |
25 |
12 24
|
raleqbidv |
⊢ ( ( ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑌 ) ∧ 𝑏 = ( Base ‘ 𝑔 ) ) → ( ∀ 𝑧 ∈ 𝑏 ( ( 𝑦 ( +g ‘ 𝑔 ) 𝑧 ) 𝑚 𝑥 ) = ( 𝑦 𝑚 ( 𝑧 𝑚 𝑥 ) ) ↔ ∀ 𝑧 ∈ 𝑋 ( ( 𝑦 + 𝑧 ) 𝑚 𝑥 ) = ( 𝑦 𝑚 ( 𝑧 𝑚 𝑥 ) ) ) ) |
26 |
12 25
|
raleqbidv |
⊢ ( ( ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑌 ) ∧ 𝑏 = ( Base ‘ 𝑔 ) ) → ( ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( ( 𝑦 ( +g ‘ 𝑔 ) 𝑧 ) 𝑚 𝑥 ) = ( 𝑦 𝑚 ( 𝑧 𝑚 𝑥 ) ) ↔ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑦 + 𝑧 ) 𝑚 𝑥 ) = ( 𝑦 𝑚 ( 𝑧 𝑚 𝑥 ) ) ) ) |
27 |
19 26
|
anbi12d |
⊢ ( ( ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑌 ) ∧ 𝑏 = ( Base ‘ 𝑔 ) ) → ( ( ( ( 0g ‘ 𝑔 ) 𝑚 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( ( 𝑦 ( +g ‘ 𝑔 ) 𝑧 ) 𝑚 𝑥 ) = ( 𝑦 𝑚 ( 𝑧 𝑚 𝑥 ) ) ) ↔ ( ( 0 𝑚 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑦 + 𝑧 ) 𝑚 𝑥 ) = ( 𝑦 𝑚 ( 𝑧 𝑚 𝑥 ) ) ) ) ) |
28 |
7 27
|
raleqbidv |
⊢ ( ( ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑌 ) ∧ 𝑏 = ( Base ‘ 𝑔 ) ) → ( ∀ 𝑥 ∈ 𝑠 ( ( ( 0g ‘ 𝑔 ) 𝑚 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( ( 𝑦 ( +g ‘ 𝑔 ) 𝑧 ) 𝑚 𝑥 ) = ( 𝑦 𝑚 ( 𝑧 𝑚 𝑥 ) ) ) ↔ ∀ 𝑥 ∈ 𝑌 ( ( 0 𝑚 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑦 + 𝑧 ) 𝑚 𝑥 ) = ( 𝑦 𝑚 ( 𝑧 𝑚 𝑥 ) ) ) ) ) |
29 |
14 28
|
rabeqbidv |
⊢ ( ( ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑌 ) ∧ 𝑏 = ( Base ‘ 𝑔 ) ) → { 𝑚 ∈ ( 𝑠 ↑m ( 𝑏 × 𝑠 ) ) ∣ ∀ 𝑥 ∈ 𝑠 ( ( ( 0g ‘ 𝑔 ) 𝑚 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( ( 𝑦 ( +g ‘ 𝑔 ) 𝑧 ) 𝑚 𝑥 ) = ( 𝑦 𝑚 ( 𝑧 𝑚 𝑥 ) ) ) } = { 𝑚 ∈ ( 𝑌 ↑m ( 𝑋 × 𝑌 ) ) ∣ ∀ 𝑥 ∈ 𝑌 ( ( 0 𝑚 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑦 + 𝑧 ) 𝑚 𝑥 ) = ( 𝑦 𝑚 ( 𝑧 𝑚 𝑥 ) ) ) } ) |
30 |
6 29
|
csbied |
⊢ ( ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑌 ) → ⦋ ( Base ‘ 𝑔 ) / 𝑏 ⦌ { 𝑚 ∈ ( 𝑠 ↑m ( 𝑏 × 𝑠 ) ) ∣ ∀ 𝑥 ∈ 𝑠 ( ( ( 0g ‘ 𝑔 ) 𝑚 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( ( 𝑦 ( +g ‘ 𝑔 ) 𝑧 ) 𝑚 𝑥 ) = ( 𝑦 𝑚 ( 𝑧 𝑚 𝑥 ) ) ) } = { 𝑚 ∈ ( 𝑌 ↑m ( 𝑋 × 𝑌 ) ) ∣ ∀ 𝑥 ∈ 𝑌 ( ( 0 𝑚 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑦 + 𝑧 ) 𝑚 𝑥 ) = ( 𝑦 𝑚 ( 𝑧 𝑚 𝑥 ) ) ) } ) |
31 |
|
ovex |
⊢ ( 𝑌 ↑m ( 𝑋 × 𝑌 ) ) ∈ V |
32 |
31
|
rabex |
⊢ { 𝑚 ∈ ( 𝑌 ↑m ( 𝑋 × 𝑌 ) ) ∣ ∀ 𝑥 ∈ 𝑌 ( ( 0 𝑚 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑦 + 𝑧 ) 𝑚 𝑥 ) = ( 𝑦 𝑚 ( 𝑧 𝑚 𝑥 ) ) ) } ∈ V |
33 |
30 4 32
|
ovmpoa |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ∈ V ) → ( 𝐺 GrpAct 𝑌 ) = { 𝑚 ∈ ( 𝑌 ↑m ( 𝑋 × 𝑌 ) ) ∣ ∀ 𝑥 ∈ 𝑌 ( ( 0 𝑚 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑦 + 𝑧 ) 𝑚 𝑥 ) = ( 𝑦 𝑚 ( 𝑧 𝑚 𝑥 ) ) ) } ) |
34 |
33
|
eleq2d |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ∈ V ) → ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ↔ ⊕ ∈ { 𝑚 ∈ ( 𝑌 ↑m ( 𝑋 × 𝑌 ) ) ∣ ∀ 𝑥 ∈ 𝑌 ( ( 0 𝑚 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑦 + 𝑧 ) 𝑚 𝑥 ) = ( 𝑦 𝑚 ( 𝑧 𝑚 𝑥 ) ) ) } ) ) |
35 |
|
oveq |
⊢ ( 𝑚 = ⊕ → ( 0 𝑚 𝑥 ) = ( 0 ⊕ 𝑥 ) ) |
36 |
35
|
eqeq1d |
⊢ ( 𝑚 = ⊕ → ( ( 0 𝑚 𝑥 ) = 𝑥 ↔ ( 0 ⊕ 𝑥 ) = 𝑥 ) ) |
37 |
|
oveq |
⊢ ( 𝑚 = ⊕ → ( ( 𝑦 + 𝑧 ) 𝑚 𝑥 ) = ( ( 𝑦 + 𝑧 ) ⊕ 𝑥 ) ) |
38 |
|
oveq |
⊢ ( 𝑚 = ⊕ → ( 𝑦 𝑚 ( 𝑧 𝑚 𝑥 ) ) = ( 𝑦 ⊕ ( 𝑧 𝑚 𝑥 ) ) ) |
39 |
|
oveq |
⊢ ( 𝑚 = ⊕ → ( 𝑧 𝑚 𝑥 ) = ( 𝑧 ⊕ 𝑥 ) ) |
40 |
39
|
oveq2d |
⊢ ( 𝑚 = ⊕ → ( 𝑦 ⊕ ( 𝑧 𝑚 𝑥 ) ) = ( 𝑦 ⊕ ( 𝑧 ⊕ 𝑥 ) ) ) |
41 |
38 40
|
eqtrd |
⊢ ( 𝑚 = ⊕ → ( 𝑦 𝑚 ( 𝑧 𝑚 𝑥 ) ) = ( 𝑦 ⊕ ( 𝑧 ⊕ 𝑥 ) ) ) |
42 |
37 41
|
eqeq12d |
⊢ ( 𝑚 = ⊕ → ( ( ( 𝑦 + 𝑧 ) 𝑚 𝑥 ) = ( 𝑦 𝑚 ( 𝑧 𝑚 𝑥 ) ) ↔ ( ( 𝑦 + 𝑧 ) ⊕ 𝑥 ) = ( 𝑦 ⊕ ( 𝑧 ⊕ 𝑥 ) ) ) ) |
43 |
42
|
2ralbidv |
⊢ ( 𝑚 = ⊕ → ( ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑦 + 𝑧 ) 𝑚 𝑥 ) = ( 𝑦 𝑚 ( 𝑧 𝑚 𝑥 ) ) ↔ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑦 + 𝑧 ) ⊕ 𝑥 ) = ( 𝑦 ⊕ ( 𝑧 ⊕ 𝑥 ) ) ) ) |
44 |
36 43
|
anbi12d |
⊢ ( 𝑚 = ⊕ → ( ( ( 0 𝑚 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑦 + 𝑧 ) 𝑚 𝑥 ) = ( 𝑦 𝑚 ( 𝑧 𝑚 𝑥 ) ) ) ↔ ( ( 0 ⊕ 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑦 + 𝑧 ) ⊕ 𝑥 ) = ( 𝑦 ⊕ ( 𝑧 ⊕ 𝑥 ) ) ) ) ) |
45 |
44
|
ralbidv |
⊢ ( 𝑚 = ⊕ → ( ∀ 𝑥 ∈ 𝑌 ( ( 0 𝑚 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑦 + 𝑧 ) 𝑚 𝑥 ) = ( 𝑦 𝑚 ( 𝑧 𝑚 𝑥 ) ) ) ↔ ∀ 𝑥 ∈ 𝑌 ( ( 0 ⊕ 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑦 + 𝑧 ) ⊕ 𝑥 ) = ( 𝑦 ⊕ ( 𝑧 ⊕ 𝑥 ) ) ) ) ) |
46 |
45
|
elrab |
⊢ ( ⊕ ∈ { 𝑚 ∈ ( 𝑌 ↑m ( 𝑋 × 𝑌 ) ) ∣ ∀ 𝑥 ∈ 𝑌 ( ( 0 𝑚 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑦 + 𝑧 ) 𝑚 𝑥 ) = ( 𝑦 𝑚 ( 𝑧 𝑚 𝑥 ) ) ) } ↔ ( ⊕ ∈ ( 𝑌 ↑m ( 𝑋 × 𝑌 ) ) ∧ ∀ 𝑥 ∈ 𝑌 ( ( 0 ⊕ 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑦 + 𝑧 ) ⊕ 𝑥 ) = ( 𝑦 ⊕ ( 𝑧 ⊕ 𝑥 ) ) ) ) ) |
47 |
34 46
|
bitrdi |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ∈ V ) → ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ↔ ( ⊕ ∈ ( 𝑌 ↑m ( 𝑋 × 𝑌 ) ) ∧ ∀ 𝑥 ∈ 𝑌 ( ( 0 ⊕ 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑦 + 𝑧 ) ⊕ 𝑥 ) = ( 𝑦 ⊕ ( 𝑧 ⊕ 𝑥 ) ) ) ) ) ) |
48 |
|
simpr |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ∈ V ) → 𝑌 ∈ V ) |
49 |
1
|
fvexi |
⊢ 𝑋 ∈ V |
50 |
|
xpexg |
⊢ ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) → ( 𝑋 × 𝑌 ) ∈ V ) |
51 |
49 48 50
|
sylancr |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ∈ V ) → ( 𝑋 × 𝑌 ) ∈ V ) |
52 |
48 51
|
elmapd |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ∈ V ) → ( ⊕ ∈ ( 𝑌 ↑m ( 𝑋 × 𝑌 ) ) ↔ ⊕ : ( 𝑋 × 𝑌 ) ⟶ 𝑌 ) ) |
53 |
52
|
anbi1d |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ∈ V ) → ( ( ⊕ ∈ ( 𝑌 ↑m ( 𝑋 × 𝑌 ) ) ∧ ∀ 𝑥 ∈ 𝑌 ( ( 0 ⊕ 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑦 + 𝑧 ) ⊕ 𝑥 ) = ( 𝑦 ⊕ ( 𝑧 ⊕ 𝑥 ) ) ) ) ↔ ( ⊕ : ( 𝑋 × 𝑌 ) ⟶ 𝑌 ∧ ∀ 𝑥 ∈ 𝑌 ( ( 0 ⊕ 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑦 + 𝑧 ) ⊕ 𝑥 ) = ( 𝑦 ⊕ ( 𝑧 ⊕ 𝑥 ) ) ) ) ) ) |
54 |
47 53
|
bitrd |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ∈ V ) → ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ↔ ( ⊕ : ( 𝑋 × 𝑌 ) ⟶ 𝑌 ∧ ∀ 𝑥 ∈ 𝑌 ( ( 0 ⊕ 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑦 + 𝑧 ) ⊕ 𝑥 ) = ( 𝑦 ⊕ ( 𝑧 ⊕ 𝑥 ) ) ) ) ) ) |
55 |
5 54
|
biadanii |
⊢ ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ↔ ( ( 𝐺 ∈ Grp ∧ 𝑌 ∈ V ) ∧ ( ⊕ : ( 𝑋 × 𝑌 ) ⟶ 𝑌 ∧ ∀ 𝑥 ∈ 𝑌 ( ( 0 ⊕ 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑦 + 𝑧 ) ⊕ 𝑥 ) = ( 𝑦 ⊕ ( 𝑧 ⊕ 𝑥 ) ) ) ) ) ) |