Step |
Hyp |
Ref |
Expression |
1 |
|
eqeq1 |
⊢ ( 𝑧 = 𝑍 → ( 𝑧 = ( 𝑝 + 𝑞 ) ↔ 𝑍 = ( 𝑝 + 𝑞 ) ) ) |
2 |
1
|
3anbi3d |
⊢ ( 𝑧 = 𝑍 → ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑧 = ( 𝑝 + 𝑞 ) ) ↔ ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = ( 𝑝 + 𝑞 ) ) ) ) |
3 |
2
|
2rexbidv |
⊢ ( 𝑧 = 𝑍 → ( ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑧 = ( 𝑝 + 𝑞 ) ) ↔ ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = ( 𝑝 + 𝑞 ) ) ) ) |
4 |
|
df-gbe |
⊢ GoldbachEven = { 𝑧 ∈ Even ∣ ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑧 = ( 𝑝 + 𝑞 ) ) } |
5 |
3 4
|
elrab2 |
⊢ ( 𝑍 ∈ GoldbachEven ↔ ( 𝑍 ∈ Even ∧ ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = ( 𝑝 + 𝑞 ) ) ) ) |