Metamath Proof Explorer


Theorem isgbe

Description: The predicate "is an even Goldbach number". An even Goldbach number is an even integer having a Goldbach partition, i.e. which can be written as a sum of two odd primes. (Contributed by AV, 20-Jul-2020)

Ref Expression
Assertion isgbe ( 𝑍 ∈ GoldbachEven ↔ ( 𝑍 ∈ Even ∧ ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = ( 𝑝 + 𝑞 ) ) ) )

Proof

Step Hyp Ref Expression
1 eqeq1 ( 𝑧 = 𝑍 → ( 𝑧 = ( 𝑝 + 𝑞 ) ↔ 𝑍 = ( 𝑝 + 𝑞 ) ) )
2 1 3anbi3d ( 𝑧 = 𝑍 → ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑧 = ( 𝑝 + 𝑞 ) ) ↔ ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = ( 𝑝 + 𝑞 ) ) ) )
3 2 2rexbidv ( 𝑧 = 𝑍 → ( ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑧 = ( 𝑝 + 𝑞 ) ) ↔ ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = ( 𝑝 + 𝑞 ) ) ) )
4 df-gbe GoldbachEven = { 𝑧 ∈ Even ∣ ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑧 = ( 𝑝 + 𝑞 ) ) }
5 3 4 elrab2 ( 𝑍 ∈ GoldbachEven ↔ ( 𝑍 ∈ Even ∧ ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = ( 𝑝 + 𝑞 ) ) ) )