| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							eqeq1 | 
							⊢ ( 𝑧  =  𝑍  →  ( 𝑧  =  ( ( 𝑝  +  𝑞 )  +  𝑟 )  ↔  𝑍  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) )  | 
						
						
							| 2 | 
							
								1
							 | 
							anbi2d | 
							⊢ ( 𝑧  =  𝑍  →  ( ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑟  ∈   Odd  )  ∧  𝑧  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) )  ↔  ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑟  ∈   Odd  )  ∧  𝑍  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							rexbidv | 
							⊢ ( 𝑧  =  𝑍  →  ( ∃ 𝑟  ∈  ℙ ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑟  ∈   Odd  )  ∧  𝑧  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) )  ↔  ∃ 𝑟  ∈  ℙ ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑟  ∈   Odd  )  ∧  𝑍  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							2rexbidv | 
							⊢ ( 𝑧  =  𝑍  →  ( ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑟  ∈   Odd  )  ∧  𝑧  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) )  ↔  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑟  ∈   Odd  )  ∧  𝑍  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							df-gbo | 
							⊢  GoldbachOdd   =  { 𝑧  ∈   Odd   ∣  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑟  ∈   Odd  )  ∧  𝑧  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) }  | 
						
						
							| 6 | 
							
								4 5
							 | 
							elrab2 | 
							⊢ ( 𝑍  ∈   GoldbachOdd   ↔  ( 𝑍  ∈   Odd   ∧  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑟  ∈   Odd  )  ∧  𝑍  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) )  |