Step |
Hyp |
Ref |
Expression |
1 |
|
isghm.w |
⊢ 𝑋 = ( Base ‘ 𝑆 ) |
2 |
|
isghm.x |
⊢ 𝑌 = ( Base ‘ 𝑇 ) |
3 |
|
isghm.a |
⊢ + = ( +g ‘ 𝑆 ) |
4 |
|
isghm.b |
⊢ ⨣ = ( +g ‘ 𝑇 ) |
5 |
|
df-ghm |
⊢ GrpHom = ( 𝑠 ∈ Grp , 𝑡 ∈ Grp ↦ { 𝑓 ∣ [ ( Base ‘ 𝑠 ) / 𝑤 ] ( 𝑓 : 𝑤 ⟶ ( Base ‘ 𝑡 ) ∧ ∀ 𝑢 ∈ 𝑤 ∀ 𝑣 ∈ 𝑤 ( 𝑓 ‘ ( 𝑢 ( +g ‘ 𝑠 ) 𝑣 ) ) = ( ( 𝑓 ‘ 𝑢 ) ( +g ‘ 𝑡 ) ( 𝑓 ‘ 𝑣 ) ) ) } ) |
6 |
5
|
elmpocl |
⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → ( 𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ) ) |
7 |
|
fvex |
⊢ ( Base ‘ 𝑠 ) ∈ V |
8 |
|
feq2 |
⊢ ( 𝑤 = ( Base ‘ 𝑠 ) → ( 𝑓 : 𝑤 ⟶ ( Base ‘ 𝑡 ) ↔ 𝑓 : ( Base ‘ 𝑠 ) ⟶ ( Base ‘ 𝑡 ) ) ) |
9 |
|
raleq |
⊢ ( 𝑤 = ( Base ‘ 𝑠 ) → ( ∀ 𝑣 ∈ 𝑤 ( 𝑓 ‘ ( 𝑢 ( +g ‘ 𝑠 ) 𝑣 ) ) = ( ( 𝑓 ‘ 𝑢 ) ( +g ‘ 𝑡 ) ( 𝑓 ‘ 𝑣 ) ) ↔ ∀ 𝑣 ∈ ( Base ‘ 𝑠 ) ( 𝑓 ‘ ( 𝑢 ( +g ‘ 𝑠 ) 𝑣 ) ) = ( ( 𝑓 ‘ 𝑢 ) ( +g ‘ 𝑡 ) ( 𝑓 ‘ 𝑣 ) ) ) ) |
10 |
9
|
raleqbi1dv |
⊢ ( 𝑤 = ( Base ‘ 𝑠 ) → ( ∀ 𝑢 ∈ 𝑤 ∀ 𝑣 ∈ 𝑤 ( 𝑓 ‘ ( 𝑢 ( +g ‘ 𝑠 ) 𝑣 ) ) = ( ( 𝑓 ‘ 𝑢 ) ( +g ‘ 𝑡 ) ( 𝑓 ‘ 𝑣 ) ) ↔ ∀ 𝑢 ∈ ( Base ‘ 𝑠 ) ∀ 𝑣 ∈ ( Base ‘ 𝑠 ) ( 𝑓 ‘ ( 𝑢 ( +g ‘ 𝑠 ) 𝑣 ) ) = ( ( 𝑓 ‘ 𝑢 ) ( +g ‘ 𝑡 ) ( 𝑓 ‘ 𝑣 ) ) ) ) |
11 |
8 10
|
anbi12d |
⊢ ( 𝑤 = ( Base ‘ 𝑠 ) → ( ( 𝑓 : 𝑤 ⟶ ( Base ‘ 𝑡 ) ∧ ∀ 𝑢 ∈ 𝑤 ∀ 𝑣 ∈ 𝑤 ( 𝑓 ‘ ( 𝑢 ( +g ‘ 𝑠 ) 𝑣 ) ) = ( ( 𝑓 ‘ 𝑢 ) ( +g ‘ 𝑡 ) ( 𝑓 ‘ 𝑣 ) ) ) ↔ ( 𝑓 : ( Base ‘ 𝑠 ) ⟶ ( Base ‘ 𝑡 ) ∧ ∀ 𝑢 ∈ ( Base ‘ 𝑠 ) ∀ 𝑣 ∈ ( Base ‘ 𝑠 ) ( 𝑓 ‘ ( 𝑢 ( +g ‘ 𝑠 ) 𝑣 ) ) = ( ( 𝑓 ‘ 𝑢 ) ( +g ‘ 𝑡 ) ( 𝑓 ‘ 𝑣 ) ) ) ) ) |
12 |
7 11
|
sbcie |
⊢ ( [ ( Base ‘ 𝑠 ) / 𝑤 ] ( 𝑓 : 𝑤 ⟶ ( Base ‘ 𝑡 ) ∧ ∀ 𝑢 ∈ 𝑤 ∀ 𝑣 ∈ 𝑤 ( 𝑓 ‘ ( 𝑢 ( +g ‘ 𝑠 ) 𝑣 ) ) = ( ( 𝑓 ‘ 𝑢 ) ( +g ‘ 𝑡 ) ( 𝑓 ‘ 𝑣 ) ) ) ↔ ( 𝑓 : ( Base ‘ 𝑠 ) ⟶ ( Base ‘ 𝑡 ) ∧ ∀ 𝑢 ∈ ( Base ‘ 𝑠 ) ∀ 𝑣 ∈ ( Base ‘ 𝑠 ) ( 𝑓 ‘ ( 𝑢 ( +g ‘ 𝑠 ) 𝑣 ) ) = ( ( 𝑓 ‘ 𝑢 ) ( +g ‘ 𝑡 ) ( 𝑓 ‘ 𝑣 ) ) ) ) |
13 |
|
fveq2 |
⊢ ( 𝑠 = 𝑆 → ( Base ‘ 𝑠 ) = ( Base ‘ 𝑆 ) ) |
14 |
13 1
|
eqtr4di |
⊢ ( 𝑠 = 𝑆 → ( Base ‘ 𝑠 ) = 𝑋 ) |
15 |
14
|
feq2d |
⊢ ( 𝑠 = 𝑆 → ( 𝑓 : ( Base ‘ 𝑠 ) ⟶ ( Base ‘ 𝑡 ) ↔ 𝑓 : 𝑋 ⟶ ( Base ‘ 𝑡 ) ) ) |
16 |
|
fveq2 |
⊢ ( 𝑠 = 𝑆 → ( +g ‘ 𝑠 ) = ( +g ‘ 𝑆 ) ) |
17 |
16 3
|
eqtr4di |
⊢ ( 𝑠 = 𝑆 → ( +g ‘ 𝑠 ) = + ) |
18 |
17
|
oveqd |
⊢ ( 𝑠 = 𝑆 → ( 𝑢 ( +g ‘ 𝑠 ) 𝑣 ) = ( 𝑢 + 𝑣 ) ) |
19 |
18
|
fveqeq2d |
⊢ ( 𝑠 = 𝑆 → ( ( 𝑓 ‘ ( 𝑢 ( +g ‘ 𝑠 ) 𝑣 ) ) = ( ( 𝑓 ‘ 𝑢 ) ( +g ‘ 𝑡 ) ( 𝑓 ‘ 𝑣 ) ) ↔ ( 𝑓 ‘ ( 𝑢 + 𝑣 ) ) = ( ( 𝑓 ‘ 𝑢 ) ( +g ‘ 𝑡 ) ( 𝑓 ‘ 𝑣 ) ) ) ) |
20 |
14 19
|
raleqbidv |
⊢ ( 𝑠 = 𝑆 → ( ∀ 𝑣 ∈ ( Base ‘ 𝑠 ) ( 𝑓 ‘ ( 𝑢 ( +g ‘ 𝑠 ) 𝑣 ) ) = ( ( 𝑓 ‘ 𝑢 ) ( +g ‘ 𝑡 ) ( 𝑓 ‘ 𝑣 ) ) ↔ ∀ 𝑣 ∈ 𝑋 ( 𝑓 ‘ ( 𝑢 + 𝑣 ) ) = ( ( 𝑓 ‘ 𝑢 ) ( +g ‘ 𝑡 ) ( 𝑓 ‘ 𝑣 ) ) ) ) |
21 |
14 20
|
raleqbidv |
⊢ ( 𝑠 = 𝑆 → ( ∀ 𝑢 ∈ ( Base ‘ 𝑠 ) ∀ 𝑣 ∈ ( Base ‘ 𝑠 ) ( 𝑓 ‘ ( 𝑢 ( +g ‘ 𝑠 ) 𝑣 ) ) = ( ( 𝑓 ‘ 𝑢 ) ( +g ‘ 𝑡 ) ( 𝑓 ‘ 𝑣 ) ) ↔ ∀ 𝑢 ∈ 𝑋 ∀ 𝑣 ∈ 𝑋 ( 𝑓 ‘ ( 𝑢 + 𝑣 ) ) = ( ( 𝑓 ‘ 𝑢 ) ( +g ‘ 𝑡 ) ( 𝑓 ‘ 𝑣 ) ) ) ) |
22 |
15 21
|
anbi12d |
⊢ ( 𝑠 = 𝑆 → ( ( 𝑓 : ( Base ‘ 𝑠 ) ⟶ ( Base ‘ 𝑡 ) ∧ ∀ 𝑢 ∈ ( Base ‘ 𝑠 ) ∀ 𝑣 ∈ ( Base ‘ 𝑠 ) ( 𝑓 ‘ ( 𝑢 ( +g ‘ 𝑠 ) 𝑣 ) ) = ( ( 𝑓 ‘ 𝑢 ) ( +g ‘ 𝑡 ) ( 𝑓 ‘ 𝑣 ) ) ) ↔ ( 𝑓 : 𝑋 ⟶ ( Base ‘ 𝑡 ) ∧ ∀ 𝑢 ∈ 𝑋 ∀ 𝑣 ∈ 𝑋 ( 𝑓 ‘ ( 𝑢 + 𝑣 ) ) = ( ( 𝑓 ‘ 𝑢 ) ( +g ‘ 𝑡 ) ( 𝑓 ‘ 𝑣 ) ) ) ) ) |
23 |
12 22
|
syl5bb |
⊢ ( 𝑠 = 𝑆 → ( [ ( Base ‘ 𝑠 ) / 𝑤 ] ( 𝑓 : 𝑤 ⟶ ( Base ‘ 𝑡 ) ∧ ∀ 𝑢 ∈ 𝑤 ∀ 𝑣 ∈ 𝑤 ( 𝑓 ‘ ( 𝑢 ( +g ‘ 𝑠 ) 𝑣 ) ) = ( ( 𝑓 ‘ 𝑢 ) ( +g ‘ 𝑡 ) ( 𝑓 ‘ 𝑣 ) ) ) ↔ ( 𝑓 : 𝑋 ⟶ ( Base ‘ 𝑡 ) ∧ ∀ 𝑢 ∈ 𝑋 ∀ 𝑣 ∈ 𝑋 ( 𝑓 ‘ ( 𝑢 + 𝑣 ) ) = ( ( 𝑓 ‘ 𝑢 ) ( +g ‘ 𝑡 ) ( 𝑓 ‘ 𝑣 ) ) ) ) ) |
24 |
23
|
abbidv |
⊢ ( 𝑠 = 𝑆 → { 𝑓 ∣ [ ( Base ‘ 𝑠 ) / 𝑤 ] ( 𝑓 : 𝑤 ⟶ ( Base ‘ 𝑡 ) ∧ ∀ 𝑢 ∈ 𝑤 ∀ 𝑣 ∈ 𝑤 ( 𝑓 ‘ ( 𝑢 ( +g ‘ 𝑠 ) 𝑣 ) ) = ( ( 𝑓 ‘ 𝑢 ) ( +g ‘ 𝑡 ) ( 𝑓 ‘ 𝑣 ) ) ) } = { 𝑓 ∣ ( 𝑓 : 𝑋 ⟶ ( Base ‘ 𝑡 ) ∧ ∀ 𝑢 ∈ 𝑋 ∀ 𝑣 ∈ 𝑋 ( 𝑓 ‘ ( 𝑢 + 𝑣 ) ) = ( ( 𝑓 ‘ 𝑢 ) ( +g ‘ 𝑡 ) ( 𝑓 ‘ 𝑣 ) ) ) } ) |
25 |
|
fveq2 |
⊢ ( 𝑡 = 𝑇 → ( Base ‘ 𝑡 ) = ( Base ‘ 𝑇 ) ) |
26 |
25 2
|
eqtr4di |
⊢ ( 𝑡 = 𝑇 → ( Base ‘ 𝑡 ) = 𝑌 ) |
27 |
26
|
feq3d |
⊢ ( 𝑡 = 𝑇 → ( 𝑓 : 𝑋 ⟶ ( Base ‘ 𝑡 ) ↔ 𝑓 : 𝑋 ⟶ 𝑌 ) ) |
28 |
|
fveq2 |
⊢ ( 𝑡 = 𝑇 → ( +g ‘ 𝑡 ) = ( +g ‘ 𝑇 ) ) |
29 |
28 4
|
eqtr4di |
⊢ ( 𝑡 = 𝑇 → ( +g ‘ 𝑡 ) = ⨣ ) |
30 |
29
|
oveqd |
⊢ ( 𝑡 = 𝑇 → ( ( 𝑓 ‘ 𝑢 ) ( +g ‘ 𝑡 ) ( 𝑓 ‘ 𝑣 ) ) = ( ( 𝑓 ‘ 𝑢 ) ⨣ ( 𝑓 ‘ 𝑣 ) ) ) |
31 |
30
|
eqeq2d |
⊢ ( 𝑡 = 𝑇 → ( ( 𝑓 ‘ ( 𝑢 + 𝑣 ) ) = ( ( 𝑓 ‘ 𝑢 ) ( +g ‘ 𝑡 ) ( 𝑓 ‘ 𝑣 ) ) ↔ ( 𝑓 ‘ ( 𝑢 + 𝑣 ) ) = ( ( 𝑓 ‘ 𝑢 ) ⨣ ( 𝑓 ‘ 𝑣 ) ) ) ) |
32 |
31
|
2ralbidv |
⊢ ( 𝑡 = 𝑇 → ( ∀ 𝑢 ∈ 𝑋 ∀ 𝑣 ∈ 𝑋 ( 𝑓 ‘ ( 𝑢 + 𝑣 ) ) = ( ( 𝑓 ‘ 𝑢 ) ( +g ‘ 𝑡 ) ( 𝑓 ‘ 𝑣 ) ) ↔ ∀ 𝑢 ∈ 𝑋 ∀ 𝑣 ∈ 𝑋 ( 𝑓 ‘ ( 𝑢 + 𝑣 ) ) = ( ( 𝑓 ‘ 𝑢 ) ⨣ ( 𝑓 ‘ 𝑣 ) ) ) ) |
33 |
27 32
|
anbi12d |
⊢ ( 𝑡 = 𝑇 → ( ( 𝑓 : 𝑋 ⟶ ( Base ‘ 𝑡 ) ∧ ∀ 𝑢 ∈ 𝑋 ∀ 𝑣 ∈ 𝑋 ( 𝑓 ‘ ( 𝑢 + 𝑣 ) ) = ( ( 𝑓 ‘ 𝑢 ) ( +g ‘ 𝑡 ) ( 𝑓 ‘ 𝑣 ) ) ) ↔ ( 𝑓 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑢 ∈ 𝑋 ∀ 𝑣 ∈ 𝑋 ( 𝑓 ‘ ( 𝑢 + 𝑣 ) ) = ( ( 𝑓 ‘ 𝑢 ) ⨣ ( 𝑓 ‘ 𝑣 ) ) ) ) ) |
34 |
33
|
abbidv |
⊢ ( 𝑡 = 𝑇 → { 𝑓 ∣ ( 𝑓 : 𝑋 ⟶ ( Base ‘ 𝑡 ) ∧ ∀ 𝑢 ∈ 𝑋 ∀ 𝑣 ∈ 𝑋 ( 𝑓 ‘ ( 𝑢 + 𝑣 ) ) = ( ( 𝑓 ‘ 𝑢 ) ( +g ‘ 𝑡 ) ( 𝑓 ‘ 𝑣 ) ) ) } = { 𝑓 ∣ ( 𝑓 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑢 ∈ 𝑋 ∀ 𝑣 ∈ 𝑋 ( 𝑓 ‘ ( 𝑢 + 𝑣 ) ) = ( ( 𝑓 ‘ 𝑢 ) ⨣ ( 𝑓 ‘ 𝑣 ) ) ) } ) |
35 |
1
|
fvexi |
⊢ 𝑋 ∈ V |
36 |
2
|
fvexi |
⊢ 𝑌 ∈ V |
37 |
|
mapex |
⊢ ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) → { 𝑓 ∣ 𝑓 : 𝑋 ⟶ 𝑌 } ∈ V ) |
38 |
35 36 37
|
mp2an |
⊢ { 𝑓 ∣ 𝑓 : 𝑋 ⟶ 𝑌 } ∈ V |
39 |
|
simpl |
⊢ ( ( 𝑓 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑢 ∈ 𝑋 ∀ 𝑣 ∈ 𝑋 ( 𝑓 ‘ ( 𝑢 + 𝑣 ) ) = ( ( 𝑓 ‘ 𝑢 ) ⨣ ( 𝑓 ‘ 𝑣 ) ) ) → 𝑓 : 𝑋 ⟶ 𝑌 ) |
40 |
39
|
ss2abi |
⊢ { 𝑓 ∣ ( 𝑓 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑢 ∈ 𝑋 ∀ 𝑣 ∈ 𝑋 ( 𝑓 ‘ ( 𝑢 + 𝑣 ) ) = ( ( 𝑓 ‘ 𝑢 ) ⨣ ( 𝑓 ‘ 𝑣 ) ) ) } ⊆ { 𝑓 ∣ 𝑓 : 𝑋 ⟶ 𝑌 } |
41 |
38 40
|
ssexi |
⊢ { 𝑓 ∣ ( 𝑓 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑢 ∈ 𝑋 ∀ 𝑣 ∈ 𝑋 ( 𝑓 ‘ ( 𝑢 + 𝑣 ) ) = ( ( 𝑓 ‘ 𝑢 ) ⨣ ( 𝑓 ‘ 𝑣 ) ) ) } ∈ V |
42 |
24 34 5 41
|
ovmpo |
⊢ ( ( 𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ) → ( 𝑆 GrpHom 𝑇 ) = { 𝑓 ∣ ( 𝑓 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑢 ∈ 𝑋 ∀ 𝑣 ∈ 𝑋 ( 𝑓 ‘ ( 𝑢 + 𝑣 ) ) = ( ( 𝑓 ‘ 𝑢 ) ⨣ ( 𝑓 ‘ 𝑣 ) ) ) } ) |
43 |
42
|
eleq2d |
⊢ ( ( 𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ) → ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ↔ 𝐹 ∈ { 𝑓 ∣ ( 𝑓 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑢 ∈ 𝑋 ∀ 𝑣 ∈ 𝑋 ( 𝑓 ‘ ( 𝑢 + 𝑣 ) ) = ( ( 𝑓 ‘ 𝑢 ) ⨣ ( 𝑓 ‘ 𝑣 ) ) ) } ) ) |
44 |
|
fex |
⊢ ( ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑋 ∈ V ) → 𝐹 ∈ V ) |
45 |
35 44
|
mpan2 |
⊢ ( 𝐹 : 𝑋 ⟶ 𝑌 → 𝐹 ∈ V ) |
46 |
45
|
adantr |
⊢ ( ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑢 ∈ 𝑋 ∀ 𝑣 ∈ 𝑋 ( 𝐹 ‘ ( 𝑢 + 𝑣 ) ) = ( ( 𝐹 ‘ 𝑢 ) ⨣ ( 𝐹 ‘ 𝑣 ) ) ) → 𝐹 ∈ V ) |
47 |
|
feq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 : 𝑋 ⟶ 𝑌 ↔ 𝐹 : 𝑋 ⟶ 𝑌 ) ) |
48 |
|
fveq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ ( 𝑢 + 𝑣 ) ) = ( 𝐹 ‘ ( 𝑢 + 𝑣 ) ) ) |
49 |
|
fveq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑢 ) ) |
50 |
|
fveq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 𝑣 ) = ( 𝐹 ‘ 𝑣 ) ) |
51 |
49 50
|
oveq12d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 ‘ 𝑢 ) ⨣ ( 𝑓 ‘ 𝑣 ) ) = ( ( 𝐹 ‘ 𝑢 ) ⨣ ( 𝐹 ‘ 𝑣 ) ) ) |
52 |
48 51
|
eqeq12d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 ‘ ( 𝑢 + 𝑣 ) ) = ( ( 𝑓 ‘ 𝑢 ) ⨣ ( 𝑓 ‘ 𝑣 ) ) ↔ ( 𝐹 ‘ ( 𝑢 + 𝑣 ) ) = ( ( 𝐹 ‘ 𝑢 ) ⨣ ( 𝐹 ‘ 𝑣 ) ) ) ) |
53 |
52
|
2ralbidv |
⊢ ( 𝑓 = 𝐹 → ( ∀ 𝑢 ∈ 𝑋 ∀ 𝑣 ∈ 𝑋 ( 𝑓 ‘ ( 𝑢 + 𝑣 ) ) = ( ( 𝑓 ‘ 𝑢 ) ⨣ ( 𝑓 ‘ 𝑣 ) ) ↔ ∀ 𝑢 ∈ 𝑋 ∀ 𝑣 ∈ 𝑋 ( 𝐹 ‘ ( 𝑢 + 𝑣 ) ) = ( ( 𝐹 ‘ 𝑢 ) ⨣ ( 𝐹 ‘ 𝑣 ) ) ) ) |
54 |
47 53
|
anbi12d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑢 ∈ 𝑋 ∀ 𝑣 ∈ 𝑋 ( 𝑓 ‘ ( 𝑢 + 𝑣 ) ) = ( ( 𝑓 ‘ 𝑢 ) ⨣ ( 𝑓 ‘ 𝑣 ) ) ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑢 ∈ 𝑋 ∀ 𝑣 ∈ 𝑋 ( 𝐹 ‘ ( 𝑢 + 𝑣 ) ) = ( ( 𝐹 ‘ 𝑢 ) ⨣ ( 𝐹 ‘ 𝑣 ) ) ) ) ) |
55 |
46 54
|
elab3 |
⊢ ( 𝐹 ∈ { 𝑓 ∣ ( 𝑓 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑢 ∈ 𝑋 ∀ 𝑣 ∈ 𝑋 ( 𝑓 ‘ ( 𝑢 + 𝑣 ) ) = ( ( 𝑓 ‘ 𝑢 ) ⨣ ( 𝑓 ‘ 𝑣 ) ) ) } ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑢 ∈ 𝑋 ∀ 𝑣 ∈ 𝑋 ( 𝐹 ‘ ( 𝑢 + 𝑣 ) ) = ( ( 𝐹 ‘ 𝑢 ) ⨣ ( 𝐹 ‘ 𝑣 ) ) ) ) |
56 |
43 55
|
bitrdi |
⊢ ( ( 𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ) → ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑢 ∈ 𝑋 ∀ 𝑣 ∈ 𝑋 ( 𝐹 ‘ ( 𝑢 + 𝑣 ) ) = ( ( 𝐹 ‘ 𝑢 ) ⨣ ( 𝐹 ‘ 𝑣 ) ) ) ) ) |
57 |
6 56
|
biadanii |
⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ↔ ( ( 𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ) ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑢 ∈ 𝑋 ∀ 𝑣 ∈ 𝑋 ( 𝐹 ‘ ( 𝑢 + 𝑣 ) ) = ( ( 𝐹 ‘ 𝑢 ) ⨣ ( 𝐹 ‘ 𝑣 ) ) ) ) ) |