Metamath Proof Explorer


Theorem isghm3

Description: Property of a group homomorphism, similar to ismhm . (Contributed by Mario Carneiro, 7-Mar-2015)

Ref Expression
Hypotheses isghm.w 𝑋 = ( Base ‘ 𝑆 )
isghm.x 𝑌 = ( Base ‘ 𝑇 )
isghm.a + = ( +g𝑆 )
isghm.b = ( +g𝑇 )
Assertion isghm3 ( ( 𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ) → ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ↔ ( 𝐹 : 𝑋𝑌 ∧ ∀ 𝑢𝑋𝑣𝑋 ( 𝐹 ‘ ( 𝑢 + 𝑣 ) ) = ( ( 𝐹𝑢 ) ( 𝐹𝑣 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 isghm.w 𝑋 = ( Base ‘ 𝑆 )
2 isghm.x 𝑌 = ( Base ‘ 𝑇 )
3 isghm.a + = ( +g𝑆 )
4 isghm.b = ( +g𝑇 )
5 1 2 3 4 isghm ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ↔ ( ( 𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ) ∧ ( 𝐹 : 𝑋𝑌 ∧ ∀ 𝑢𝑋𝑣𝑋 ( 𝐹 ‘ ( 𝑢 + 𝑣 ) ) = ( ( 𝐹𝑢 ) ( 𝐹𝑣 ) ) ) ) )
6 5 baib ( ( 𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ) → ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ↔ ( 𝐹 : 𝑋𝑌 ∧ ∀ 𝑢𝑋𝑣𝑋 ( 𝐹 ‘ ( 𝑢 + 𝑣 ) ) = ( ( 𝐹𝑢 ) ( 𝐹𝑣 ) ) ) ) )