Step |
Hyp |
Ref |
Expression |
1 |
|
isghmd.x |
⊢ 𝑋 = ( Base ‘ 𝑆 ) |
2 |
|
isghmd.y |
⊢ 𝑌 = ( Base ‘ 𝑇 ) |
3 |
|
isghmd.a |
⊢ + = ( +g ‘ 𝑆 ) |
4 |
|
isghmd.b |
⊢ ⨣ = ( +g ‘ 𝑇 ) |
5 |
|
isghmd.s |
⊢ ( 𝜑 → 𝑆 ∈ Grp ) |
6 |
|
isghmd.t |
⊢ ( 𝜑 → 𝑇 ∈ Grp ) |
7 |
|
isghmd.f |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ 𝑌 ) |
8 |
|
isghmd.l |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) |
9 |
8
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) |
10 |
7 9
|
jca |
⊢ ( 𝜑 → ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) ) |
11 |
1 2 3 4
|
isghm |
⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ↔ ( ( 𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ) ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
12 |
5 6 10 11
|
syl21anbrc |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) |