Step |
Hyp |
Ref |
Expression |
1 |
|
isgim.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
isgim.c |
⊢ 𝐶 = ( Base ‘ 𝑆 ) |
3 |
|
df-3an |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝑆 ∈ Grp ∧ 𝐹 ∈ { 𝑐 ∈ ( 𝑅 GrpHom 𝑆 ) ∣ 𝑐 : 𝐵 –1-1-onto→ 𝐶 } ) ↔ ( ( 𝑅 ∈ Grp ∧ 𝑆 ∈ Grp ) ∧ 𝐹 ∈ { 𝑐 ∈ ( 𝑅 GrpHom 𝑆 ) ∣ 𝑐 : 𝐵 –1-1-onto→ 𝐶 } ) ) |
4 |
|
df-gim |
⊢ GrpIso = ( 𝑎 ∈ Grp , 𝑏 ∈ Grp ↦ { 𝑐 ∈ ( 𝑎 GrpHom 𝑏 ) ∣ 𝑐 : ( Base ‘ 𝑎 ) –1-1-onto→ ( Base ‘ 𝑏 ) } ) |
5 |
|
ovex |
⊢ ( 𝑎 GrpHom 𝑏 ) ∈ V |
6 |
5
|
rabex |
⊢ { 𝑐 ∈ ( 𝑎 GrpHom 𝑏 ) ∣ 𝑐 : ( Base ‘ 𝑎 ) –1-1-onto→ ( Base ‘ 𝑏 ) } ∈ V |
7 |
|
oveq12 |
⊢ ( ( 𝑎 = 𝑅 ∧ 𝑏 = 𝑆 ) → ( 𝑎 GrpHom 𝑏 ) = ( 𝑅 GrpHom 𝑆 ) ) |
8 |
|
fveq2 |
⊢ ( 𝑎 = 𝑅 → ( Base ‘ 𝑎 ) = ( Base ‘ 𝑅 ) ) |
9 |
8 1
|
eqtr4di |
⊢ ( 𝑎 = 𝑅 → ( Base ‘ 𝑎 ) = 𝐵 ) |
10 |
|
fveq2 |
⊢ ( 𝑏 = 𝑆 → ( Base ‘ 𝑏 ) = ( Base ‘ 𝑆 ) ) |
11 |
10 2
|
eqtr4di |
⊢ ( 𝑏 = 𝑆 → ( Base ‘ 𝑏 ) = 𝐶 ) |
12 |
|
f1oeq23 |
⊢ ( ( ( Base ‘ 𝑎 ) = 𝐵 ∧ ( Base ‘ 𝑏 ) = 𝐶 ) → ( 𝑐 : ( Base ‘ 𝑎 ) –1-1-onto→ ( Base ‘ 𝑏 ) ↔ 𝑐 : 𝐵 –1-1-onto→ 𝐶 ) ) |
13 |
9 11 12
|
syl2an |
⊢ ( ( 𝑎 = 𝑅 ∧ 𝑏 = 𝑆 ) → ( 𝑐 : ( Base ‘ 𝑎 ) –1-1-onto→ ( Base ‘ 𝑏 ) ↔ 𝑐 : 𝐵 –1-1-onto→ 𝐶 ) ) |
14 |
7 13
|
rabeqbidv |
⊢ ( ( 𝑎 = 𝑅 ∧ 𝑏 = 𝑆 ) → { 𝑐 ∈ ( 𝑎 GrpHom 𝑏 ) ∣ 𝑐 : ( Base ‘ 𝑎 ) –1-1-onto→ ( Base ‘ 𝑏 ) } = { 𝑐 ∈ ( 𝑅 GrpHom 𝑆 ) ∣ 𝑐 : 𝐵 –1-1-onto→ 𝐶 } ) |
15 |
4 6 14
|
elovmpo |
⊢ ( 𝐹 ∈ ( 𝑅 GrpIso 𝑆 ) ↔ ( 𝑅 ∈ Grp ∧ 𝑆 ∈ Grp ∧ 𝐹 ∈ { 𝑐 ∈ ( 𝑅 GrpHom 𝑆 ) ∣ 𝑐 : 𝐵 –1-1-onto→ 𝐶 } ) ) |
16 |
|
ghmgrp1 |
⊢ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) → 𝑅 ∈ Grp ) |
17 |
|
ghmgrp2 |
⊢ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) → 𝑆 ∈ Grp ) |
18 |
16 17
|
jca |
⊢ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) → ( 𝑅 ∈ Grp ∧ 𝑆 ∈ Grp ) ) |
19 |
18
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) → ( 𝑅 ∈ Grp ∧ 𝑆 ∈ Grp ) ) |
20 |
19
|
pm4.71ri |
⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ↔ ( ( 𝑅 ∈ Grp ∧ 𝑆 ∈ Grp ) ∧ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ) ) |
21 |
|
f1oeq1 |
⊢ ( 𝑐 = 𝐹 → ( 𝑐 : 𝐵 –1-1-onto→ 𝐶 ↔ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ) |
22 |
21
|
elrab |
⊢ ( 𝐹 ∈ { 𝑐 ∈ ( 𝑅 GrpHom 𝑆 ) ∣ 𝑐 : 𝐵 –1-1-onto→ 𝐶 } ↔ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ) |
23 |
22
|
anbi2i |
⊢ ( ( ( 𝑅 ∈ Grp ∧ 𝑆 ∈ Grp ) ∧ 𝐹 ∈ { 𝑐 ∈ ( 𝑅 GrpHom 𝑆 ) ∣ 𝑐 : 𝐵 –1-1-onto→ 𝐶 } ) ↔ ( ( 𝑅 ∈ Grp ∧ 𝑆 ∈ Grp ) ∧ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ) ) |
24 |
20 23
|
bitr4i |
⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ↔ ( ( 𝑅 ∈ Grp ∧ 𝑆 ∈ Grp ) ∧ 𝐹 ∈ { 𝑐 ∈ ( 𝑅 GrpHom 𝑆 ) ∣ 𝑐 : 𝐵 –1-1-onto→ 𝐶 } ) ) |
25 |
3 15 24
|
3bitr4i |
⊢ ( 𝐹 ∈ ( 𝑅 GrpIso 𝑆 ) ↔ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ) |