| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isgrp.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
isgrp.p |
⊢ + = ( +g ‘ 𝐺 ) |
| 3 |
|
isgrp.z |
⊢ 0 = ( 0g ‘ 𝐺 ) |
| 4 |
|
fveq2 |
⊢ ( 𝑔 = 𝐺 → ( Base ‘ 𝑔 ) = ( Base ‘ 𝐺 ) ) |
| 5 |
4 1
|
eqtr4di |
⊢ ( 𝑔 = 𝐺 → ( Base ‘ 𝑔 ) = 𝐵 ) |
| 6 |
|
fveq2 |
⊢ ( 𝑔 = 𝐺 → ( +g ‘ 𝑔 ) = ( +g ‘ 𝐺 ) ) |
| 7 |
6 2
|
eqtr4di |
⊢ ( 𝑔 = 𝐺 → ( +g ‘ 𝑔 ) = + ) |
| 8 |
7
|
oveqd |
⊢ ( 𝑔 = 𝐺 → ( 𝑚 ( +g ‘ 𝑔 ) 𝑎 ) = ( 𝑚 + 𝑎 ) ) |
| 9 |
|
fveq2 |
⊢ ( 𝑔 = 𝐺 → ( 0g ‘ 𝑔 ) = ( 0g ‘ 𝐺 ) ) |
| 10 |
9 3
|
eqtr4di |
⊢ ( 𝑔 = 𝐺 → ( 0g ‘ 𝑔 ) = 0 ) |
| 11 |
8 10
|
eqeq12d |
⊢ ( 𝑔 = 𝐺 → ( ( 𝑚 ( +g ‘ 𝑔 ) 𝑎 ) = ( 0g ‘ 𝑔 ) ↔ ( 𝑚 + 𝑎 ) = 0 ) ) |
| 12 |
5 11
|
rexeqbidv |
⊢ ( 𝑔 = 𝐺 → ( ∃ 𝑚 ∈ ( Base ‘ 𝑔 ) ( 𝑚 ( +g ‘ 𝑔 ) 𝑎 ) = ( 0g ‘ 𝑔 ) ↔ ∃ 𝑚 ∈ 𝐵 ( 𝑚 + 𝑎 ) = 0 ) ) |
| 13 |
5 12
|
raleqbidv |
⊢ ( 𝑔 = 𝐺 → ( ∀ 𝑎 ∈ ( Base ‘ 𝑔 ) ∃ 𝑚 ∈ ( Base ‘ 𝑔 ) ( 𝑚 ( +g ‘ 𝑔 ) 𝑎 ) = ( 0g ‘ 𝑔 ) ↔ ∀ 𝑎 ∈ 𝐵 ∃ 𝑚 ∈ 𝐵 ( 𝑚 + 𝑎 ) = 0 ) ) |
| 14 |
|
df-grp |
⊢ Grp = { 𝑔 ∈ Mnd ∣ ∀ 𝑎 ∈ ( Base ‘ 𝑔 ) ∃ 𝑚 ∈ ( Base ‘ 𝑔 ) ( 𝑚 ( +g ‘ 𝑔 ) 𝑎 ) = ( 0g ‘ 𝑔 ) } |
| 15 |
13 14
|
elrab2 |
⊢ ( 𝐺 ∈ Grp ↔ ( 𝐺 ∈ Mnd ∧ ∀ 𝑎 ∈ 𝐵 ∃ 𝑚 ∈ 𝐵 ( 𝑚 + 𝑎 ) = 0 ) ) |