Metamath Proof Explorer


Theorem isgrpd

Description: Deduce a group from its properties. Unlike isgrpd2 , this one goes straight from the base properties rather than going through Mnd . N (negative) is normally dependent on x i.e. read it as N ( x ) . (Contributed by NM, 6-Jun-2013) (Revised by Mario Carneiro, 6-Jan-2015)

Ref Expression
Hypotheses isgrpd.b ( 𝜑𝐵 = ( Base ‘ 𝐺 ) )
isgrpd.p ( 𝜑+ = ( +g𝐺 ) )
isgrpd.c ( ( 𝜑𝑥𝐵𝑦𝐵 ) → ( 𝑥 + 𝑦 ) ∈ 𝐵 )
isgrpd.a ( ( 𝜑 ∧ ( 𝑥𝐵𝑦𝐵𝑧𝐵 ) ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) )
isgrpd.z ( 𝜑0𝐵 )
isgrpd.i ( ( 𝜑𝑥𝐵 ) → ( 0 + 𝑥 ) = 𝑥 )
isgrpd.n ( ( 𝜑𝑥𝐵 ) → 𝑁𝐵 )
isgrpd.j ( ( 𝜑𝑥𝐵 ) → ( 𝑁 + 𝑥 ) = 0 )
Assertion isgrpd ( 𝜑𝐺 ∈ Grp )

Proof

Step Hyp Ref Expression
1 isgrpd.b ( 𝜑𝐵 = ( Base ‘ 𝐺 ) )
2 isgrpd.p ( 𝜑+ = ( +g𝐺 ) )
3 isgrpd.c ( ( 𝜑𝑥𝐵𝑦𝐵 ) → ( 𝑥 + 𝑦 ) ∈ 𝐵 )
4 isgrpd.a ( ( 𝜑 ∧ ( 𝑥𝐵𝑦𝐵𝑧𝐵 ) ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) )
5 isgrpd.z ( 𝜑0𝐵 )
6 isgrpd.i ( ( 𝜑𝑥𝐵 ) → ( 0 + 𝑥 ) = 𝑥 )
7 isgrpd.n ( ( 𝜑𝑥𝐵 ) → 𝑁𝐵 )
8 isgrpd.j ( ( 𝜑𝑥𝐵 ) → ( 𝑁 + 𝑥 ) = 0 )
9 oveq1 ( 𝑦 = 𝑁 → ( 𝑦 + 𝑥 ) = ( 𝑁 + 𝑥 ) )
10 9 eqeq1d ( 𝑦 = 𝑁 → ( ( 𝑦 + 𝑥 ) = 0 ↔ ( 𝑁 + 𝑥 ) = 0 ) )
11 10 rspcev ( ( 𝑁𝐵 ∧ ( 𝑁 + 𝑥 ) = 0 ) → ∃ 𝑦𝐵 ( 𝑦 + 𝑥 ) = 0 )
12 7 8 11 syl2anc ( ( 𝜑𝑥𝐵 ) → ∃ 𝑦𝐵 ( 𝑦 + 𝑥 ) = 0 )
13 1 2 3 4 5 6 12 isgrpde ( 𝜑𝐺 ∈ Grp )