Step |
Hyp |
Ref |
Expression |
1 |
|
isgrpd2.b |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐺 ) ) |
2 |
|
isgrpd2.p |
⊢ ( 𝜑 → + = ( +g ‘ 𝐺 ) ) |
3 |
|
isgrpd2.z |
⊢ ( 𝜑 → 0 = ( 0g ‘ 𝐺 ) ) |
4 |
|
isgrpd2.g |
⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
5 |
|
isgrpd2e.n |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ∃ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑥 ) = 0 ) |
6 |
5
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑥 ) = 0 ) |
7 |
2
|
oveqd |
⊢ ( 𝜑 → ( 𝑦 + 𝑥 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) |
8 |
7 3
|
eqeq12d |
⊢ ( 𝜑 → ( ( 𝑦 + 𝑥 ) = 0 ↔ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) = ( 0g ‘ 𝐺 ) ) ) |
9 |
1 8
|
rexeqbidv |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑥 ) = 0 ↔ ∃ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) = ( 0g ‘ 𝐺 ) ) ) |
10 |
1 9
|
raleqbidv |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑥 ) = 0 ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ∃ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) = ( 0g ‘ 𝐺 ) ) ) |
11 |
6 10
|
mpbid |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ∃ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) = ( 0g ‘ 𝐺 ) ) |
12 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
13 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
14 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
15 |
12 13 14
|
isgrp |
⊢ ( 𝐺 ∈ Grp ↔ ( 𝐺 ∈ Mnd ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ∃ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) = ( 0g ‘ 𝐺 ) ) ) |
16 |
4 11 15
|
sylanbrc |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |