Description: Deduce a group from its properties. In this version of isgrpd , we don't assume there is an expression for the inverse of x . (Contributed by NM, 6-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isgrpd.b | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐺 ) ) | |
isgrpd.p | ⊢ ( 𝜑 → + = ( +g ‘ 𝐺 ) ) | ||
isgrpd.c | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 + 𝑦 ) ∈ 𝐵 ) | ||
isgrpd.a | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) | ||
isgrpd.z | ⊢ ( 𝜑 → 0 ∈ 𝐵 ) | ||
isgrpd.i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 0 + 𝑥 ) = 𝑥 ) | ||
isgrpde.n | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ∃ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑥 ) = 0 ) | ||
Assertion | isgrpde | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isgrpd.b | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐺 ) ) | |
2 | isgrpd.p | ⊢ ( 𝜑 → + = ( +g ‘ 𝐺 ) ) | |
3 | isgrpd.c | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 + 𝑦 ) ∈ 𝐵 ) | |
4 | isgrpd.a | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) | |
5 | isgrpd.z | ⊢ ( 𝜑 → 0 ∈ 𝐵 ) | |
6 | isgrpd.i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 0 + 𝑥 ) = 𝑥 ) | |
7 | isgrpde.n | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ∃ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑥 ) = 0 ) | |
8 | 3 5 6 4 7 | grpridd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 + 0 ) = 𝑥 ) |
9 | 1 2 5 6 8 | grpidd | ⊢ ( 𝜑 → 0 = ( 0g ‘ 𝐺 ) ) |
10 | 1 2 3 4 5 6 8 | ismndd | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
11 | 1 2 9 10 7 | isgrpd2e | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) |