Step |
Hyp |
Ref |
Expression |
1 |
|
isgrpi.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
isgrpi.p |
⊢ + = ( +g ‘ 𝐺 ) |
3 |
|
isgrpi.c |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 + 𝑦 ) ∈ 𝐵 ) |
4 |
|
isgrpi.a |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) |
5 |
|
isgrpi.z |
⊢ 0 ∈ 𝐵 |
6 |
|
isgrpi.i |
⊢ ( 𝑥 ∈ 𝐵 → ( 0 + 𝑥 ) = 𝑥 ) |
7 |
|
isgrpi.n |
⊢ ( 𝑥 ∈ 𝐵 → 𝑁 ∈ 𝐵 ) |
8 |
|
isgrpi.j |
⊢ ( 𝑥 ∈ 𝐵 → ( 𝑁 + 𝑥 ) = 0 ) |
9 |
1
|
a1i |
⊢ ( ⊤ → 𝐵 = ( Base ‘ 𝐺 ) ) |
10 |
2
|
a1i |
⊢ ( ⊤ → + = ( +g ‘ 𝐺 ) ) |
11 |
3
|
3adant1 |
⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 + 𝑦 ) ∈ 𝐵 ) |
12 |
4
|
adantl |
⊢ ( ( ⊤ ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) |
13 |
5
|
a1i |
⊢ ( ⊤ → 0 ∈ 𝐵 ) |
14 |
6
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝐵 ) → ( 0 + 𝑥 ) = 𝑥 ) |
15 |
7
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝐵 ) → 𝑁 ∈ 𝐵 ) |
16 |
8
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝐵 ) → ( 𝑁 + 𝑥 ) = 0 ) |
17 |
9 10 11 12 13 14 15 16
|
isgrpd |
⊢ ( ⊤ → 𝐺 ∈ Grp ) |
18 |
17
|
mptru |
⊢ 𝐺 ∈ Grp |