| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isgrpi.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | isgrpi.p | ⊢  +   =  ( +g ‘ 𝐺 ) | 
						
							| 3 |  | isgrpi.c | ⊢ ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  →  ( 𝑥  +  𝑦 )  ∈  𝐵 ) | 
						
							| 4 |  | isgrpi.a | ⊢ ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  →  ( ( 𝑥  +  𝑦 )  +  𝑧 )  =  ( 𝑥  +  ( 𝑦  +  𝑧 ) ) ) | 
						
							| 5 |  | isgrpi.z | ⊢  0   ∈  𝐵 | 
						
							| 6 |  | isgrpi.i | ⊢ ( 𝑥  ∈  𝐵  →  (  0   +  𝑥 )  =  𝑥 ) | 
						
							| 7 |  | isgrpi.n | ⊢ ( 𝑥  ∈  𝐵  →  𝑁  ∈  𝐵 ) | 
						
							| 8 |  | isgrpi.j | ⊢ ( 𝑥  ∈  𝐵  →  ( 𝑁  +  𝑥 )  =   0  ) | 
						
							| 9 | 1 | a1i | ⊢ ( ⊤  →  𝐵  =  ( Base ‘ 𝐺 ) ) | 
						
							| 10 | 2 | a1i | ⊢ ( ⊤  →   +   =  ( +g ‘ 𝐺 ) ) | 
						
							| 11 | 3 | 3adant1 | ⊢ ( ( ⊤  ∧  𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  →  ( 𝑥  +  𝑦 )  ∈  𝐵 ) | 
						
							| 12 | 4 | adantl | ⊢ ( ( ⊤  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  ( ( 𝑥  +  𝑦 )  +  𝑧 )  =  ( 𝑥  +  ( 𝑦  +  𝑧 ) ) ) | 
						
							| 13 | 5 | a1i | ⊢ ( ⊤  →   0   ∈  𝐵 ) | 
						
							| 14 | 6 | adantl | ⊢ ( ( ⊤  ∧  𝑥  ∈  𝐵 )  →  (  0   +  𝑥 )  =  𝑥 ) | 
						
							| 15 | 7 | adantl | ⊢ ( ( ⊤  ∧  𝑥  ∈  𝐵 )  →  𝑁  ∈  𝐵 ) | 
						
							| 16 | 8 | adantl | ⊢ ( ( ⊤  ∧  𝑥  ∈  𝐵 )  →  ( 𝑁  +  𝑥 )  =   0  ) | 
						
							| 17 | 9 10 11 12 13 14 15 16 | isgrpd | ⊢ ( ⊤  →  𝐺  ∈  Grp ) | 
						
							| 18 | 17 | mptru | ⊢ 𝐺  ∈  Grp |