| Step |
Hyp |
Ref |
Expression |
| 1 |
|
grpinveu.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
grpinveu.p |
⊢ + = ( +g ‘ 𝐺 ) |
| 3 |
|
grpinveu.o |
⊢ 0 = ( 0g ‘ 𝐺 ) |
| 4 |
1 2 3
|
grpid |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑍 ∈ 𝐵 ) → ( ( 𝑍 + 𝑍 ) = 𝑍 ↔ 0 = 𝑍 ) ) |
| 5 |
4
|
biimpd |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑍 ∈ 𝐵 ) → ( ( 𝑍 + 𝑍 ) = 𝑍 → 0 = 𝑍 ) ) |
| 6 |
5
|
expimpd |
⊢ ( 𝐺 ∈ Grp → ( ( 𝑍 ∈ 𝐵 ∧ ( 𝑍 + 𝑍 ) = 𝑍 ) → 0 = 𝑍 ) ) |
| 7 |
1 3
|
grpidcl |
⊢ ( 𝐺 ∈ Grp → 0 ∈ 𝐵 ) |
| 8 |
1 2 3
|
grplid |
⊢ ( ( 𝐺 ∈ Grp ∧ 0 ∈ 𝐵 ) → ( 0 + 0 ) = 0 ) |
| 9 |
7 8
|
mpdan |
⊢ ( 𝐺 ∈ Grp → ( 0 + 0 ) = 0 ) |
| 10 |
7 9
|
jca |
⊢ ( 𝐺 ∈ Grp → ( 0 ∈ 𝐵 ∧ ( 0 + 0 ) = 0 ) ) |
| 11 |
|
eleq1 |
⊢ ( 0 = 𝑍 → ( 0 ∈ 𝐵 ↔ 𝑍 ∈ 𝐵 ) ) |
| 12 |
|
id |
⊢ ( 0 = 𝑍 → 0 = 𝑍 ) |
| 13 |
12 12
|
oveq12d |
⊢ ( 0 = 𝑍 → ( 0 + 0 ) = ( 𝑍 + 𝑍 ) ) |
| 14 |
13 12
|
eqeq12d |
⊢ ( 0 = 𝑍 → ( ( 0 + 0 ) = 0 ↔ ( 𝑍 + 𝑍 ) = 𝑍 ) ) |
| 15 |
11 14
|
anbi12d |
⊢ ( 0 = 𝑍 → ( ( 0 ∈ 𝐵 ∧ ( 0 + 0 ) = 0 ) ↔ ( 𝑍 ∈ 𝐵 ∧ ( 𝑍 + 𝑍 ) = 𝑍 ) ) ) |
| 16 |
10 15
|
syl5ibcom |
⊢ ( 𝐺 ∈ Grp → ( 0 = 𝑍 → ( 𝑍 ∈ 𝐵 ∧ ( 𝑍 + 𝑍 ) = 𝑍 ) ) ) |
| 17 |
6 16
|
impbid |
⊢ ( 𝐺 ∈ Grp → ( ( 𝑍 ∈ 𝐵 ∧ ( 𝑍 + 𝑍 ) = 𝑍 ) ↔ 0 = 𝑍 ) ) |