Step |
Hyp |
Ref |
Expression |
1 |
|
grpinv.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
grpinv.p |
⊢ + = ( +g ‘ 𝐺 ) |
3 |
|
grpinv.u |
⊢ 0 = ( 0g ‘ 𝐺 ) |
4 |
|
grpinv.n |
⊢ 𝑁 = ( invg ‘ 𝐺 ) |
5 |
1 2 3 4
|
grpinvval |
⊢ ( 𝑥 ∈ 𝐵 → ( 𝑁 ‘ 𝑥 ) = ( ℩ 𝑒 ∈ 𝐵 ( 𝑒 + 𝑥 ) = 0 ) ) |
6 |
5
|
ad2antlr |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑀 : 𝐵 ⟶ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝑀 ‘ 𝑥 ) + 𝑥 ) = 0 ) → ( 𝑁 ‘ 𝑥 ) = ( ℩ 𝑒 ∈ 𝐵 ( 𝑒 + 𝑥 ) = 0 ) ) |
7 |
|
simpr |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑀 : 𝐵 ⟶ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝑀 ‘ 𝑥 ) + 𝑥 ) = 0 ) → ( ( 𝑀 ‘ 𝑥 ) + 𝑥 ) = 0 ) |
8 |
|
simpllr |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑀 : 𝐵 ⟶ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝑀 ‘ 𝑥 ) + 𝑥 ) = 0 ) → 𝑀 : 𝐵 ⟶ 𝐵 ) |
9 |
|
simplr |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑀 : 𝐵 ⟶ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝑀 ‘ 𝑥 ) + 𝑥 ) = 0 ) → 𝑥 ∈ 𝐵 ) |
10 |
8 9
|
ffvelrnd |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑀 : 𝐵 ⟶ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝑀 ‘ 𝑥 ) + 𝑥 ) = 0 ) → ( 𝑀 ‘ 𝑥 ) ∈ 𝐵 ) |
11 |
1 2 3
|
grpinveu |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ) → ∃! 𝑒 ∈ 𝐵 ( 𝑒 + 𝑥 ) = 0 ) |
12 |
11
|
ad4ant13 |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑀 : 𝐵 ⟶ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝑀 ‘ 𝑥 ) + 𝑥 ) = 0 ) → ∃! 𝑒 ∈ 𝐵 ( 𝑒 + 𝑥 ) = 0 ) |
13 |
|
oveq1 |
⊢ ( 𝑒 = ( 𝑀 ‘ 𝑥 ) → ( 𝑒 + 𝑥 ) = ( ( 𝑀 ‘ 𝑥 ) + 𝑥 ) ) |
14 |
13
|
eqeq1d |
⊢ ( 𝑒 = ( 𝑀 ‘ 𝑥 ) → ( ( 𝑒 + 𝑥 ) = 0 ↔ ( ( 𝑀 ‘ 𝑥 ) + 𝑥 ) = 0 ) ) |
15 |
14
|
riota2 |
⊢ ( ( ( 𝑀 ‘ 𝑥 ) ∈ 𝐵 ∧ ∃! 𝑒 ∈ 𝐵 ( 𝑒 + 𝑥 ) = 0 ) → ( ( ( 𝑀 ‘ 𝑥 ) + 𝑥 ) = 0 ↔ ( ℩ 𝑒 ∈ 𝐵 ( 𝑒 + 𝑥 ) = 0 ) = ( 𝑀 ‘ 𝑥 ) ) ) |
16 |
10 12 15
|
syl2anc |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑀 : 𝐵 ⟶ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝑀 ‘ 𝑥 ) + 𝑥 ) = 0 ) → ( ( ( 𝑀 ‘ 𝑥 ) + 𝑥 ) = 0 ↔ ( ℩ 𝑒 ∈ 𝐵 ( 𝑒 + 𝑥 ) = 0 ) = ( 𝑀 ‘ 𝑥 ) ) ) |
17 |
7 16
|
mpbid |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑀 : 𝐵 ⟶ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝑀 ‘ 𝑥 ) + 𝑥 ) = 0 ) → ( ℩ 𝑒 ∈ 𝐵 ( 𝑒 + 𝑥 ) = 0 ) = ( 𝑀 ‘ 𝑥 ) ) |
18 |
6 17
|
eqtrd |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑀 : 𝐵 ⟶ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝑀 ‘ 𝑥 ) + 𝑥 ) = 0 ) → ( 𝑁 ‘ 𝑥 ) = ( 𝑀 ‘ 𝑥 ) ) |
19 |
18
|
ex |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑀 : 𝐵 ⟶ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → ( ( ( 𝑀 ‘ 𝑥 ) + 𝑥 ) = 0 → ( 𝑁 ‘ 𝑥 ) = ( 𝑀 ‘ 𝑥 ) ) ) |
20 |
19
|
ralimdva |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑀 : 𝐵 ⟶ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐵 ( ( 𝑀 ‘ 𝑥 ) + 𝑥 ) = 0 → ∀ 𝑥 ∈ 𝐵 ( 𝑁 ‘ 𝑥 ) = ( 𝑀 ‘ 𝑥 ) ) ) |
21 |
20
|
impr |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑀 : 𝐵 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑀 ‘ 𝑥 ) + 𝑥 ) = 0 ) ) → ∀ 𝑥 ∈ 𝐵 ( 𝑁 ‘ 𝑥 ) = ( 𝑀 ‘ 𝑥 ) ) |
22 |
1 4
|
grpinvfn |
⊢ 𝑁 Fn 𝐵 |
23 |
|
ffn |
⊢ ( 𝑀 : 𝐵 ⟶ 𝐵 → 𝑀 Fn 𝐵 ) |
24 |
23
|
ad2antrl |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑀 : 𝐵 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑀 ‘ 𝑥 ) + 𝑥 ) = 0 ) ) → 𝑀 Fn 𝐵 ) |
25 |
|
eqfnfv |
⊢ ( ( 𝑁 Fn 𝐵 ∧ 𝑀 Fn 𝐵 ) → ( 𝑁 = 𝑀 ↔ ∀ 𝑥 ∈ 𝐵 ( 𝑁 ‘ 𝑥 ) = ( 𝑀 ‘ 𝑥 ) ) ) |
26 |
22 24 25
|
sylancr |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑀 : 𝐵 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑀 ‘ 𝑥 ) + 𝑥 ) = 0 ) ) → ( 𝑁 = 𝑀 ↔ ∀ 𝑥 ∈ 𝐵 ( 𝑁 ‘ 𝑥 ) = ( 𝑀 ‘ 𝑥 ) ) ) |
27 |
21 26
|
mpbird |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑀 : 𝐵 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑀 ‘ 𝑥 ) + 𝑥 ) = 0 ) ) → 𝑁 = 𝑀 ) |
28 |
27
|
ex |
⊢ ( 𝐺 ∈ Grp → ( ( 𝑀 : 𝐵 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑀 ‘ 𝑥 ) + 𝑥 ) = 0 ) → 𝑁 = 𝑀 ) ) |
29 |
1 4
|
grpinvf |
⊢ ( 𝐺 ∈ Grp → 𝑁 : 𝐵 ⟶ 𝐵 ) |
30 |
1 2 3 4
|
grplinv |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝑁 ‘ 𝑥 ) + 𝑥 ) = 0 ) |
31 |
30
|
ralrimiva |
⊢ ( 𝐺 ∈ Grp → ∀ 𝑥 ∈ 𝐵 ( ( 𝑁 ‘ 𝑥 ) + 𝑥 ) = 0 ) |
32 |
29 31
|
jca |
⊢ ( 𝐺 ∈ Grp → ( 𝑁 : 𝐵 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑁 ‘ 𝑥 ) + 𝑥 ) = 0 ) ) |
33 |
|
feq1 |
⊢ ( 𝑁 = 𝑀 → ( 𝑁 : 𝐵 ⟶ 𝐵 ↔ 𝑀 : 𝐵 ⟶ 𝐵 ) ) |
34 |
|
fveq1 |
⊢ ( 𝑁 = 𝑀 → ( 𝑁 ‘ 𝑥 ) = ( 𝑀 ‘ 𝑥 ) ) |
35 |
34
|
oveq1d |
⊢ ( 𝑁 = 𝑀 → ( ( 𝑁 ‘ 𝑥 ) + 𝑥 ) = ( ( 𝑀 ‘ 𝑥 ) + 𝑥 ) ) |
36 |
35
|
eqeq1d |
⊢ ( 𝑁 = 𝑀 → ( ( ( 𝑁 ‘ 𝑥 ) + 𝑥 ) = 0 ↔ ( ( 𝑀 ‘ 𝑥 ) + 𝑥 ) = 0 ) ) |
37 |
36
|
ralbidv |
⊢ ( 𝑁 = 𝑀 → ( ∀ 𝑥 ∈ 𝐵 ( ( 𝑁 ‘ 𝑥 ) + 𝑥 ) = 0 ↔ ∀ 𝑥 ∈ 𝐵 ( ( 𝑀 ‘ 𝑥 ) + 𝑥 ) = 0 ) ) |
38 |
33 37
|
anbi12d |
⊢ ( 𝑁 = 𝑀 → ( ( 𝑁 : 𝐵 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑁 ‘ 𝑥 ) + 𝑥 ) = 0 ) ↔ ( 𝑀 : 𝐵 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑀 ‘ 𝑥 ) + 𝑥 ) = 0 ) ) ) |
39 |
32 38
|
syl5ibcom |
⊢ ( 𝐺 ∈ Grp → ( 𝑁 = 𝑀 → ( 𝑀 : 𝐵 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑀 ‘ 𝑥 ) + 𝑥 ) = 0 ) ) ) |
40 |
28 39
|
impbid |
⊢ ( 𝐺 ∈ Grp → ( ( 𝑀 : 𝐵 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑀 ‘ 𝑥 ) + 𝑥 ) = 0 ) ↔ 𝑁 = 𝑀 ) ) |