Metamath Proof Explorer


Theorem isgrpix

Description: Properties that determine a group. Read N as N ( x ) . Note: This theorem has hard-coded structure indices for demonstration purposes. It is not intended for general use. (New usage is discouraged.) (Contributed by NM, 4-Sep-2011)

Ref Expression
Hypotheses isgrpix.a 𝐵 ∈ V
isgrpix.b + ∈ V
isgrpix.g 𝐺 = { ⟨ 1 , 𝐵 ⟩ , ⟨ 2 , + ⟩ }
isgrpix.2 ( ( 𝑥𝐵𝑦𝐵 ) → ( 𝑥 + 𝑦 ) ∈ 𝐵 )
isgrpix.3 ( ( 𝑥𝐵𝑦𝐵𝑧𝐵 ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) )
isgrpix.z 0𝐵
isgrpix.5 ( 𝑥𝐵 → ( 0 + 𝑥 ) = 𝑥 )
isgrpix.6 ( 𝑥𝐵𝑁𝐵 )
isgrpix.7 ( 𝑥𝐵 → ( 𝑁 + 𝑥 ) = 0 )
Assertion isgrpix 𝐺 ∈ Grp

Proof

Step Hyp Ref Expression
1 isgrpix.a 𝐵 ∈ V
2 isgrpix.b + ∈ V
3 isgrpix.g 𝐺 = { ⟨ 1 , 𝐵 ⟩ , ⟨ 2 , + ⟩ }
4 isgrpix.2 ( ( 𝑥𝐵𝑦𝐵 ) → ( 𝑥 + 𝑦 ) ∈ 𝐵 )
5 isgrpix.3 ( ( 𝑥𝐵𝑦𝐵𝑧𝐵 ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) )
6 isgrpix.z 0𝐵
7 isgrpix.5 ( 𝑥𝐵 → ( 0 + 𝑥 ) = 𝑥 )
8 isgrpix.6 ( 𝑥𝐵𝑁𝐵 )
9 isgrpix.7 ( 𝑥𝐵 → ( 𝑁 + 𝑥 ) = 0 )
10 1 2 3 grpbasex 𝐵 = ( Base ‘ 𝐺 )
11 1 2 3 grpplusgx + = ( +g𝐺 )
12 10 11 4 5 6 7 8 9 isgrpi 𝐺 ∈ Grp