Description: Properties that determine a group. Read N as N ( x ) . Note: This theorem has hard-coded structure indices for demonstration purposes. It is not intended for general use. (New usage is discouraged.) (Contributed by NM, 4-Sep-2011)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isgrpix.a | ⊢ 𝐵 ∈ V | |
isgrpix.b | ⊢ + ∈ V | ||
isgrpix.g | ⊢ 𝐺 = { 〈 1 , 𝐵 〉 , 〈 2 , + 〉 } | ||
isgrpix.2 | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 + 𝑦 ) ∈ 𝐵 ) | ||
isgrpix.3 | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) | ||
isgrpix.z | ⊢ 0 ∈ 𝐵 | ||
isgrpix.5 | ⊢ ( 𝑥 ∈ 𝐵 → ( 0 + 𝑥 ) = 𝑥 ) | ||
isgrpix.6 | ⊢ ( 𝑥 ∈ 𝐵 → 𝑁 ∈ 𝐵 ) | ||
isgrpix.7 | ⊢ ( 𝑥 ∈ 𝐵 → ( 𝑁 + 𝑥 ) = 0 ) | ||
Assertion | isgrpix | ⊢ 𝐺 ∈ Grp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isgrpix.a | ⊢ 𝐵 ∈ V | |
2 | isgrpix.b | ⊢ + ∈ V | |
3 | isgrpix.g | ⊢ 𝐺 = { 〈 1 , 𝐵 〉 , 〈 2 , + 〉 } | |
4 | isgrpix.2 | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 + 𝑦 ) ∈ 𝐵 ) | |
5 | isgrpix.3 | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) | |
6 | isgrpix.z | ⊢ 0 ∈ 𝐵 | |
7 | isgrpix.5 | ⊢ ( 𝑥 ∈ 𝐵 → ( 0 + 𝑥 ) = 𝑥 ) | |
8 | isgrpix.6 | ⊢ ( 𝑥 ∈ 𝐵 → 𝑁 ∈ 𝐵 ) | |
9 | isgrpix.7 | ⊢ ( 𝑥 ∈ 𝐵 → ( 𝑁 + 𝑥 ) = 0 ) | |
10 | 1 2 3 | grpbasex | ⊢ 𝐵 = ( Base ‘ 𝐺 ) |
11 | 1 2 3 | grpplusgx | ⊢ + = ( +g ‘ 𝐺 ) |
12 | 10 11 4 5 6 7 8 9 | isgrpi | ⊢ 𝐺 ∈ Grp |