Description: Properties that determine a group. Read N as N ( x ) . Note: This theorem has hard-coded structure indices for demonstration purposes. It is not intended for general use. (New usage is discouraged.) (Contributed by NM, 4-Sep-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isgrpix.a | ⊢ 𝐵 ∈ V | |
| isgrpix.b | ⊢ + ∈ V | ||
| isgrpix.g | ⊢ 𝐺 = { 〈 1 , 𝐵 〉 , 〈 2 , + 〉 } | ||
| isgrpix.2 | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 + 𝑦 ) ∈ 𝐵 ) | ||
| isgrpix.3 | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) | ||
| isgrpix.z | ⊢ 0 ∈ 𝐵 | ||
| isgrpix.5 | ⊢ ( 𝑥 ∈ 𝐵 → ( 0 + 𝑥 ) = 𝑥 ) | ||
| isgrpix.6 | ⊢ ( 𝑥 ∈ 𝐵 → 𝑁 ∈ 𝐵 ) | ||
| isgrpix.7 | ⊢ ( 𝑥 ∈ 𝐵 → ( 𝑁 + 𝑥 ) = 0 ) | ||
| Assertion | isgrpix | ⊢ 𝐺 ∈ Grp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isgrpix.a | ⊢ 𝐵 ∈ V | |
| 2 | isgrpix.b | ⊢ + ∈ V | |
| 3 | isgrpix.g | ⊢ 𝐺 = { 〈 1 , 𝐵 〉 , 〈 2 , + 〉 } | |
| 4 | isgrpix.2 | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 + 𝑦 ) ∈ 𝐵 ) | |
| 5 | isgrpix.3 | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) | |
| 6 | isgrpix.z | ⊢ 0 ∈ 𝐵 | |
| 7 | isgrpix.5 | ⊢ ( 𝑥 ∈ 𝐵 → ( 0 + 𝑥 ) = 𝑥 ) | |
| 8 | isgrpix.6 | ⊢ ( 𝑥 ∈ 𝐵 → 𝑁 ∈ 𝐵 ) | |
| 9 | isgrpix.7 | ⊢ ( 𝑥 ∈ 𝐵 → ( 𝑁 + 𝑥 ) = 0 ) | |
| 10 | 1 2 3 | grpbasex | ⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 11 | 1 2 3 | grpplusgx | ⊢ + = ( +g ‘ 𝐺 ) |
| 12 | 10 11 4 5 6 7 8 9 | isgrpi | ⊢ 𝐺 ∈ Grp |