Step |
Hyp |
Ref |
Expression |
1 |
|
isgrp.1 |
⊢ 𝑋 = ran 𝐺 |
2 |
|
feq1 |
⊢ ( 𝑔 = 𝐺 → ( 𝑔 : ( 𝑡 × 𝑡 ) ⟶ 𝑡 ↔ 𝐺 : ( 𝑡 × 𝑡 ) ⟶ 𝑡 ) ) |
3 |
|
oveq |
⊢ ( 𝑔 = 𝐺 → ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 ) = ( ( 𝑥 𝑔 𝑦 ) 𝐺 𝑧 ) ) |
4 |
|
oveq |
⊢ ( 𝑔 = 𝐺 → ( 𝑥 𝑔 𝑦 ) = ( 𝑥 𝐺 𝑦 ) ) |
5 |
4
|
oveq1d |
⊢ ( 𝑔 = 𝐺 → ( ( 𝑥 𝑔 𝑦 ) 𝐺 𝑧 ) = ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) ) |
6 |
3 5
|
eqtrd |
⊢ ( 𝑔 = 𝐺 → ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 ) = ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) ) |
7 |
|
oveq |
⊢ ( 𝑔 = 𝐺 → ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) ) = ( 𝑥 𝐺 ( 𝑦 𝑔 𝑧 ) ) ) |
8 |
|
oveq |
⊢ ( 𝑔 = 𝐺 → ( 𝑦 𝑔 𝑧 ) = ( 𝑦 𝐺 𝑧 ) ) |
9 |
8
|
oveq2d |
⊢ ( 𝑔 = 𝐺 → ( 𝑥 𝐺 ( 𝑦 𝑔 𝑧 ) ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ) |
10 |
7 9
|
eqtrd |
⊢ ( 𝑔 = 𝐺 → ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ) |
11 |
6 10
|
eqeq12d |
⊢ ( 𝑔 = 𝐺 → ( ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 ) = ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) ) ↔ ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ) ) |
12 |
11
|
ralbidv |
⊢ ( 𝑔 = 𝐺 → ( ∀ 𝑧 ∈ 𝑡 ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 ) = ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) ) ↔ ∀ 𝑧 ∈ 𝑡 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ) ) |
13 |
12
|
2ralbidv |
⊢ ( 𝑔 = 𝐺 → ( ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ∀ 𝑧 ∈ 𝑡 ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 ) = ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) ) ↔ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ∀ 𝑧 ∈ 𝑡 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ) ) |
14 |
|
oveq |
⊢ ( 𝑔 = 𝐺 → ( 𝑢 𝑔 𝑥 ) = ( 𝑢 𝐺 𝑥 ) ) |
15 |
14
|
eqeq1d |
⊢ ( 𝑔 = 𝐺 → ( ( 𝑢 𝑔 𝑥 ) = 𝑥 ↔ ( 𝑢 𝐺 𝑥 ) = 𝑥 ) ) |
16 |
|
oveq |
⊢ ( 𝑔 = 𝐺 → ( 𝑦 𝑔 𝑥 ) = ( 𝑦 𝐺 𝑥 ) ) |
17 |
16
|
eqeq1d |
⊢ ( 𝑔 = 𝐺 → ( ( 𝑦 𝑔 𝑥 ) = 𝑢 ↔ ( 𝑦 𝐺 𝑥 ) = 𝑢 ) ) |
18 |
17
|
rexbidv |
⊢ ( 𝑔 = 𝐺 → ( ∃ 𝑦 ∈ 𝑡 ( 𝑦 𝑔 𝑥 ) = 𝑢 ↔ ∃ 𝑦 ∈ 𝑡 ( 𝑦 𝐺 𝑥 ) = 𝑢 ) ) |
19 |
15 18
|
anbi12d |
⊢ ( 𝑔 = 𝐺 → ( ( ( 𝑢 𝑔 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑡 ( 𝑦 𝑔 𝑥 ) = 𝑢 ) ↔ ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑡 ( 𝑦 𝐺 𝑥 ) = 𝑢 ) ) ) |
20 |
19
|
rexralbidv |
⊢ ( 𝑔 = 𝐺 → ( ∃ 𝑢 ∈ 𝑡 ∀ 𝑥 ∈ 𝑡 ( ( 𝑢 𝑔 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑡 ( 𝑦 𝑔 𝑥 ) = 𝑢 ) ↔ ∃ 𝑢 ∈ 𝑡 ∀ 𝑥 ∈ 𝑡 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑡 ( 𝑦 𝐺 𝑥 ) = 𝑢 ) ) ) |
21 |
2 13 20
|
3anbi123d |
⊢ ( 𝑔 = 𝐺 → ( ( 𝑔 : ( 𝑡 × 𝑡 ) ⟶ 𝑡 ∧ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ∀ 𝑧 ∈ 𝑡 ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 ) = ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) ) ∧ ∃ 𝑢 ∈ 𝑡 ∀ 𝑥 ∈ 𝑡 ( ( 𝑢 𝑔 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑡 ( 𝑦 𝑔 𝑥 ) = 𝑢 ) ) ↔ ( 𝐺 : ( 𝑡 × 𝑡 ) ⟶ 𝑡 ∧ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ∀ 𝑧 ∈ 𝑡 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ∧ ∃ 𝑢 ∈ 𝑡 ∀ 𝑥 ∈ 𝑡 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑡 ( 𝑦 𝐺 𝑥 ) = 𝑢 ) ) ) ) |
22 |
21
|
exbidv |
⊢ ( 𝑔 = 𝐺 → ( ∃ 𝑡 ( 𝑔 : ( 𝑡 × 𝑡 ) ⟶ 𝑡 ∧ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ∀ 𝑧 ∈ 𝑡 ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 ) = ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) ) ∧ ∃ 𝑢 ∈ 𝑡 ∀ 𝑥 ∈ 𝑡 ( ( 𝑢 𝑔 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑡 ( 𝑦 𝑔 𝑥 ) = 𝑢 ) ) ↔ ∃ 𝑡 ( 𝐺 : ( 𝑡 × 𝑡 ) ⟶ 𝑡 ∧ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ∀ 𝑧 ∈ 𝑡 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ∧ ∃ 𝑢 ∈ 𝑡 ∀ 𝑥 ∈ 𝑡 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑡 ( 𝑦 𝐺 𝑥 ) = 𝑢 ) ) ) ) |
23 |
|
df-grpo |
⊢ GrpOp = { 𝑔 ∣ ∃ 𝑡 ( 𝑔 : ( 𝑡 × 𝑡 ) ⟶ 𝑡 ∧ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ∀ 𝑧 ∈ 𝑡 ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 ) = ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) ) ∧ ∃ 𝑢 ∈ 𝑡 ∀ 𝑥 ∈ 𝑡 ( ( 𝑢 𝑔 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑡 ( 𝑦 𝑔 𝑥 ) = 𝑢 ) ) } |
24 |
22 23
|
elab2g |
⊢ ( 𝐺 ∈ 𝐴 → ( 𝐺 ∈ GrpOp ↔ ∃ 𝑡 ( 𝐺 : ( 𝑡 × 𝑡 ) ⟶ 𝑡 ∧ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ∀ 𝑧 ∈ 𝑡 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ∧ ∃ 𝑢 ∈ 𝑡 ∀ 𝑥 ∈ 𝑡 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑡 ( 𝑦 𝐺 𝑥 ) = 𝑢 ) ) ) ) |
25 |
|
simpl |
⊢ ( ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑡 ( 𝑦 𝐺 𝑥 ) = 𝑢 ) → ( 𝑢 𝐺 𝑥 ) = 𝑥 ) |
26 |
25
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝑡 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑡 ( 𝑦 𝐺 𝑥 ) = 𝑢 ) → ∀ 𝑥 ∈ 𝑡 ( 𝑢 𝐺 𝑥 ) = 𝑥 ) |
27 |
|
oveq2 |
⊢ ( 𝑥 = 𝑧 → ( 𝑢 𝐺 𝑥 ) = ( 𝑢 𝐺 𝑧 ) ) |
28 |
|
id |
⊢ ( 𝑥 = 𝑧 → 𝑥 = 𝑧 ) |
29 |
27 28
|
eqeq12d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ↔ ( 𝑢 𝐺 𝑧 ) = 𝑧 ) ) |
30 |
|
eqcom |
⊢ ( ( 𝑢 𝐺 𝑧 ) = 𝑧 ↔ 𝑧 = ( 𝑢 𝐺 𝑧 ) ) |
31 |
29 30
|
bitrdi |
⊢ ( 𝑥 = 𝑧 → ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ↔ 𝑧 = ( 𝑢 𝐺 𝑧 ) ) ) |
32 |
31
|
rspcv |
⊢ ( 𝑧 ∈ 𝑡 → ( ∀ 𝑥 ∈ 𝑡 ( 𝑢 𝐺 𝑥 ) = 𝑥 → 𝑧 = ( 𝑢 𝐺 𝑧 ) ) ) |
33 |
|
oveq2 |
⊢ ( 𝑦 = 𝑧 → ( 𝑢 𝐺 𝑦 ) = ( 𝑢 𝐺 𝑧 ) ) |
34 |
33
|
rspceeqv |
⊢ ( ( 𝑧 ∈ 𝑡 ∧ 𝑧 = ( 𝑢 𝐺 𝑧 ) ) → ∃ 𝑦 ∈ 𝑡 𝑧 = ( 𝑢 𝐺 𝑦 ) ) |
35 |
34
|
ex |
⊢ ( 𝑧 ∈ 𝑡 → ( 𝑧 = ( 𝑢 𝐺 𝑧 ) → ∃ 𝑦 ∈ 𝑡 𝑧 = ( 𝑢 𝐺 𝑦 ) ) ) |
36 |
32 35
|
syld |
⊢ ( 𝑧 ∈ 𝑡 → ( ∀ 𝑥 ∈ 𝑡 ( 𝑢 𝐺 𝑥 ) = 𝑥 → ∃ 𝑦 ∈ 𝑡 𝑧 = ( 𝑢 𝐺 𝑦 ) ) ) |
37 |
26 36
|
syl5 |
⊢ ( 𝑧 ∈ 𝑡 → ( ∀ 𝑥 ∈ 𝑡 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑡 ( 𝑦 𝐺 𝑥 ) = 𝑢 ) → ∃ 𝑦 ∈ 𝑡 𝑧 = ( 𝑢 𝐺 𝑦 ) ) ) |
38 |
37
|
reximdv |
⊢ ( 𝑧 ∈ 𝑡 → ( ∃ 𝑢 ∈ 𝑡 ∀ 𝑥 ∈ 𝑡 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑡 ( 𝑦 𝐺 𝑥 ) = 𝑢 ) → ∃ 𝑢 ∈ 𝑡 ∃ 𝑦 ∈ 𝑡 𝑧 = ( 𝑢 𝐺 𝑦 ) ) ) |
39 |
38
|
impcom |
⊢ ( ( ∃ 𝑢 ∈ 𝑡 ∀ 𝑥 ∈ 𝑡 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑡 ( 𝑦 𝐺 𝑥 ) = 𝑢 ) ∧ 𝑧 ∈ 𝑡 ) → ∃ 𝑢 ∈ 𝑡 ∃ 𝑦 ∈ 𝑡 𝑧 = ( 𝑢 𝐺 𝑦 ) ) |
40 |
39
|
ralrimiva |
⊢ ( ∃ 𝑢 ∈ 𝑡 ∀ 𝑥 ∈ 𝑡 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑡 ( 𝑦 𝐺 𝑥 ) = 𝑢 ) → ∀ 𝑧 ∈ 𝑡 ∃ 𝑢 ∈ 𝑡 ∃ 𝑦 ∈ 𝑡 𝑧 = ( 𝑢 𝐺 𝑦 ) ) |
41 |
40
|
anim2i |
⊢ ( ( 𝐺 : ( 𝑡 × 𝑡 ) ⟶ 𝑡 ∧ ∃ 𝑢 ∈ 𝑡 ∀ 𝑥 ∈ 𝑡 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑡 ( 𝑦 𝐺 𝑥 ) = 𝑢 ) ) → ( 𝐺 : ( 𝑡 × 𝑡 ) ⟶ 𝑡 ∧ ∀ 𝑧 ∈ 𝑡 ∃ 𝑢 ∈ 𝑡 ∃ 𝑦 ∈ 𝑡 𝑧 = ( 𝑢 𝐺 𝑦 ) ) ) |
42 |
|
foov |
⊢ ( 𝐺 : ( 𝑡 × 𝑡 ) –onto→ 𝑡 ↔ ( 𝐺 : ( 𝑡 × 𝑡 ) ⟶ 𝑡 ∧ ∀ 𝑧 ∈ 𝑡 ∃ 𝑢 ∈ 𝑡 ∃ 𝑦 ∈ 𝑡 𝑧 = ( 𝑢 𝐺 𝑦 ) ) ) |
43 |
41 42
|
sylibr |
⊢ ( ( 𝐺 : ( 𝑡 × 𝑡 ) ⟶ 𝑡 ∧ ∃ 𝑢 ∈ 𝑡 ∀ 𝑥 ∈ 𝑡 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑡 ( 𝑦 𝐺 𝑥 ) = 𝑢 ) ) → 𝐺 : ( 𝑡 × 𝑡 ) –onto→ 𝑡 ) |
44 |
|
forn |
⊢ ( 𝐺 : ( 𝑡 × 𝑡 ) –onto→ 𝑡 → ran 𝐺 = 𝑡 ) |
45 |
44
|
eqcomd |
⊢ ( 𝐺 : ( 𝑡 × 𝑡 ) –onto→ 𝑡 → 𝑡 = ran 𝐺 ) |
46 |
43 45
|
syl |
⊢ ( ( 𝐺 : ( 𝑡 × 𝑡 ) ⟶ 𝑡 ∧ ∃ 𝑢 ∈ 𝑡 ∀ 𝑥 ∈ 𝑡 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑡 ( 𝑦 𝐺 𝑥 ) = 𝑢 ) ) → 𝑡 = ran 𝐺 ) |
47 |
46
|
3adant2 |
⊢ ( ( 𝐺 : ( 𝑡 × 𝑡 ) ⟶ 𝑡 ∧ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ∀ 𝑧 ∈ 𝑡 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ∧ ∃ 𝑢 ∈ 𝑡 ∀ 𝑥 ∈ 𝑡 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑡 ( 𝑦 𝐺 𝑥 ) = 𝑢 ) ) → 𝑡 = ran 𝐺 ) |
48 |
47
|
pm4.71ri |
⊢ ( ( 𝐺 : ( 𝑡 × 𝑡 ) ⟶ 𝑡 ∧ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ∀ 𝑧 ∈ 𝑡 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ∧ ∃ 𝑢 ∈ 𝑡 ∀ 𝑥 ∈ 𝑡 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑡 ( 𝑦 𝐺 𝑥 ) = 𝑢 ) ) ↔ ( 𝑡 = ran 𝐺 ∧ ( 𝐺 : ( 𝑡 × 𝑡 ) ⟶ 𝑡 ∧ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ∀ 𝑧 ∈ 𝑡 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ∧ ∃ 𝑢 ∈ 𝑡 ∀ 𝑥 ∈ 𝑡 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑡 ( 𝑦 𝐺 𝑥 ) = 𝑢 ) ) ) ) |
49 |
48
|
exbii |
⊢ ( ∃ 𝑡 ( 𝐺 : ( 𝑡 × 𝑡 ) ⟶ 𝑡 ∧ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ∀ 𝑧 ∈ 𝑡 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ∧ ∃ 𝑢 ∈ 𝑡 ∀ 𝑥 ∈ 𝑡 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑡 ( 𝑦 𝐺 𝑥 ) = 𝑢 ) ) ↔ ∃ 𝑡 ( 𝑡 = ran 𝐺 ∧ ( 𝐺 : ( 𝑡 × 𝑡 ) ⟶ 𝑡 ∧ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ∀ 𝑧 ∈ 𝑡 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ∧ ∃ 𝑢 ∈ 𝑡 ∀ 𝑥 ∈ 𝑡 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑡 ( 𝑦 𝐺 𝑥 ) = 𝑢 ) ) ) ) |
50 |
24 49
|
bitrdi |
⊢ ( 𝐺 ∈ 𝐴 → ( 𝐺 ∈ GrpOp ↔ ∃ 𝑡 ( 𝑡 = ran 𝐺 ∧ ( 𝐺 : ( 𝑡 × 𝑡 ) ⟶ 𝑡 ∧ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ∀ 𝑧 ∈ 𝑡 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ∧ ∃ 𝑢 ∈ 𝑡 ∀ 𝑥 ∈ 𝑡 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑡 ( 𝑦 𝐺 𝑥 ) = 𝑢 ) ) ) ) ) |
51 |
|
rnexg |
⊢ ( 𝐺 ∈ 𝐴 → ran 𝐺 ∈ V ) |
52 |
1
|
eqeq2i |
⊢ ( 𝑡 = 𝑋 ↔ 𝑡 = ran 𝐺 ) |
53 |
|
xpeq1 |
⊢ ( 𝑡 = 𝑋 → ( 𝑡 × 𝑡 ) = ( 𝑋 × 𝑡 ) ) |
54 |
|
xpeq2 |
⊢ ( 𝑡 = 𝑋 → ( 𝑋 × 𝑡 ) = ( 𝑋 × 𝑋 ) ) |
55 |
53 54
|
eqtrd |
⊢ ( 𝑡 = 𝑋 → ( 𝑡 × 𝑡 ) = ( 𝑋 × 𝑋 ) ) |
56 |
55
|
feq2d |
⊢ ( 𝑡 = 𝑋 → ( 𝐺 : ( 𝑡 × 𝑡 ) ⟶ 𝑡 ↔ 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑡 ) ) |
57 |
|
feq3 |
⊢ ( 𝑡 = 𝑋 → ( 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑡 ↔ 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) ) |
58 |
56 57
|
bitrd |
⊢ ( 𝑡 = 𝑋 → ( 𝐺 : ( 𝑡 × 𝑡 ) ⟶ 𝑡 ↔ 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) ) |
59 |
|
raleq |
⊢ ( 𝑡 = 𝑋 → ( ∀ 𝑧 ∈ 𝑡 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ↔ ∀ 𝑧 ∈ 𝑋 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ) ) |
60 |
59
|
raleqbi1dv |
⊢ ( 𝑡 = 𝑋 → ( ∀ 𝑦 ∈ 𝑡 ∀ 𝑧 ∈ 𝑡 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ↔ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ) ) |
61 |
60
|
raleqbi1dv |
⊢ ( 𝑡 = 𝑋 → ( ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ∀ 𝑧 ∈ 𝑡 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ) ) |
62 |
|
rexeq |
⊢ ( 𝑡 = 𝑋 → ( ∃ 𝑦 ∈ 𝑡 ( 𝑦 𝐺 𝑥 ) = 𝑢 ↔ ∃ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝑥 ) = 𝑢 ) ) |
63 |
62
|
anbi2d |
⊢ ( 𝑡 = 𝑋 → ( ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑡 ( 𝑦 𝐺 𝑥 ) = 𝑢 ) ↔ ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝑥 ) = 𝑢 ) ) ) |
64 |
63
|
raleqbi1dv |
⊢ ( 𝑡 = 𝑋 → ( ∀ 𝑥 ∈ 𝑡 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑡 ( 𝑦 𝐺 𝑥 ) = 𝑢 ) ↔ ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝑥 ) = 𝑢 ) ) ) |
65 |
64
|
rexeqbi1dv |
⊢ ( 𝑡 = 𝑋 → ( ∃ 𝑢 ∈ 𝑡 ∀ 𝑥 ∈ 𝑡 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑡 ( 𝑦 𝐺 𝑥 ) = 𝑢 ) ↔ ∃ 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝑥 ) = 𝑢 ) ) ) |
66 |
58 61 65
|
3anbi123d |
⊢ ( 𝑡 = 𝑋 → ( ( 𝐺 : ( 𝑡 × 𝑡 ) ⟶ 𝑡 ∧ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ∀ 𝑧 ∈ 𝑡 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ∧ ∃ 𝑢 ∈ 𝑡 ∀ 𝑥 ∈ 𝑡 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑡 ( 𝑦 𝐺 𝑥 ) = 𝑢 ) ) ↔ ( 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ∧ ∃ 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝑥 ) = 𝑢 ) ) ) ) |
67 |
52 66
|
sylbir |
⊢ ( 𝑡 = ran 𝐺 → ( ( 𝐺 : ( 𝑡 × 𝑡 ) ⟶ 𝑡 ∧ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ∀ 𝑧 ∈ 𝑡 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ∧ ∃ 𝑢 ∈ 𝑡 ∀ 𝑥 ∈ 𝑡 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑡 ( 𝑦 𝐺 𝑥 ) = 𝑢 ) ) ↔ ( 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ∧ ∃ 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝑥 ) = 𝑢 ) ) ) ) |
68 |
67
|
ceqsexgv |
⊢ ( ran 𝐺 ∈ V → ( ∃ 𝑡 ( 𝑡 = ran 𝐺 ∧ ( 𝐺 : ( 𝑡 × 𝑡 ) ⟶ 𝑡 ∧ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ∀ 𝑧 ∈ 𝑡 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ∧ ∃ 𝑢 ∈ 𝑡 ∀ 𝑥 ∈ 𝑡 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑡 ( 𝑦 𝐺 𝑥 ) = 𝑢 ) ) ) ↔ ( 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ∧ ∃ 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝑥 ) = 𝑢 ) ) ) ) |
69 |
51 68
|
syl |
⊢ ( 𝐺 ∈ 𝐴 → ( ∃ 𝑡 ( 𝑡 = ran 𝐺 ∧ ( 𝐺 : ( 𝑡 × 𝑡 ) ⟶ 𝑡 ∧ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ∀ 𝑧 ∈ 𝑡 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ∧ ∃ 𝑢 ∈ 𝑡 ∀ 𝑥 ∈ 𝑡 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑡 ( 𝑦 𝐺 𝑥 ) = 𝑢 ) ) ) ↔ ( 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ∧ ∃ 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝑥 ) = 𝑢 ) ) ) ) |
70 |
50 69
|
bitrd |
⊢ ( 𝐺 ∈ 𝐴 → ( 𝐺 ∈ GrpOp ↔ ( 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ∧ ∃ 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝑥 ) = 𝑢 ) ) ) ) |