Step |
Hyp |
Ref |
Expression |
1 |
|
fzfid |
⊢ ( 𝑛 ∈ ℕ → ( 1 ... 𝑛 ) ∈ Fin ) |
2 |
|
ficardom |
⊢ ( ( 1 ... 𝑛 ) ∈ Fin → ( card ‘ ( 1 ... 𝑛 ) ) ∈ ω ) |
3 |
1 2
|
syl |
⊢ ( 𝑛 ∈ ℕ → ( card ‘ ( 1 ... 𝑛 ) ) ∈ ω ) |
4 |
|
isinf |
⊢ ( ¬ 𝐴 ∈ Fin → ∀ 𝑎 ∈ ω ∃ 𝑥 ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑎 ) ) |
5 |
|
breq2 |
⊢ ( 𝑎 = ( card ‘ ( 1 ... 𝑛 ) ) → ( 𝑥 ≈ 𝑎 ↔ 𝑥 ≈ ( card ‘ ( 1 ... 𝑛 ) ) ) ) |
6 |
5
|
anbi2d |
⊢ ( 𝑎 = ( card ‘ ( 1 ... 𝑛 ) ) → ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑎 ) ↔ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ ( card ‘ ( 1 ... 𝑛 ) ) ) ) ) |
7 |
6
|
exbidv |
⊢ ( 𝑎 = ( card ‘ ( 1 ... 𝑛 ) ) → ( ∃ 𝑥 ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑎 ) ↔ ∃ 𝑥 ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ ( card ‘ ( 1 ... 𝑛 ) ) ) ) ) |
8 |
7
|
rspcva |
⊢ ( ( ( card ‘ ( 1 ... 𝑛 ) ) ∈ ω ∧ ∀ 𝑎 ∈ ω ∃ 𝑥 ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑎 ) ) → ∃ 𝑥 ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ ( card ‘ ( 1 ... 𝑛 ) ) ) ) |
9 |
3 4 8
|
syl2anr |
⊢ ( ( ¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ ) → ∃ 𝑥 ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ ( card ‘ ( 1 ... 𝑛 ) ) ) ) |
10 |
|
velpw |
⊢ ( 𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴 ) |
11 |
10
|
biimpri |
⊢ ( 𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝒫 𝐴 ) |
12 |
11
|
a1i |
⊢ ( ( ¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ ) → ( 𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝒫 𝐴 ) ) |
13 |
|
hasheni |
⊢ ( 𝑥 ≈ ( card ‘ ( 1 ... 𝑛 ) ) → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ ( card ‘ ( 1 ... 𝑛 ) ) ) ) |
14 |
13
|
adantl |
⊢ ( ( ( ¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ≈ ( card ‘ ( 1 ... 𝑛 ) ) ) → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ ( card ‘ ( 1 ... 𝑛 ) ) ) ) |
15 |
|
hashcard |
⊢ ( ( 1 ... 𝑛 ) ∈ Fin → ( ♯ ‘ ( card ‘ ( 1 ... 𝑛 ) ) ) = ( ♯ ‘ ( 1 ... 𝑛 ) ) ) |
16 |
1 15
|
syl |
⊢ ( 𝑛 ∈ ℕ → ( ♯ ‘ ( card ‘ ( 1 ... 𝑛 ) ) ) = ( ♯ ‘ ( 1 ... 𝑛 ) ) ) |
17 |
|
nnnn0 |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℕ0 ) |
18 |
|
hashfz1 |
⊢ ( 𝑛 ∈ ℕ0 → ( ♯ ‘ ( 1 ... 𝑛 ) ) = 𝑛 ) |
19 |
17 18
|
syl |
⊢ ( 𝑛 ∈ ℕ → ( ♯ ‘ ( 1 ... 𝑛 ) ) = 𝑛 ) |
20 |
16 19
|
eqtrd |
⊢ ( 𝑛 ∈ ℕ → ( ♯ ‘ ( card ‘ ( 1 ... 𝑛 ) ) ) = 𝑛 ) |
21 |
20
|
ad2antlr |
⊢ ( ( ( ¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ≈ ( card ‘ ( 1 ... 𝑛 ) ) ) → ( ♯ ‘ ( card ‘ ( 1 ... 𝑛 ) ) ) = 𝑛 ) |
22 |
14 21
|
eqtrd |
⊢ ( ( ( ¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ≈ ( card ‘ ( 1 ... 𝑛 ) ) ) → ( ♯ ‘ 𝑥 ) = 𝑛 ) |
23 |
22
|
ex |
⊢ ( ( ¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ ) → ( 𝑥 ≈ ( card ‘ ( 1 ... 𝑛 ) ) → ( ♯ ‘ 𝑥 ) = 𝑛 ) ) |
24 |
12 23
|
anim12d |
⊢ ( ( ¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ ) → ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ ( card ‘ ( 1 ... 𝑛 ) ) ) → ( 𝑥 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑥 ) = 𝑛 ) ) ) |
25 |
24
|
eximdv |
⊢ ( ( ¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ ) → ( ∃ 𝑥 ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ ( card ‘ ( 1 ... 𝑛 ) ) ) → ∃ 𝑥 ( 𝑥 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑥 ) = 𝑛 ) ) ) |
26 |
9 25
|
mpd |
⊢ ( ( ¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ ) → ∃ 𝑥 ( 𝑥 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑥 ) = 𝑛 ) ) |
27 |
|
df-rex |
⊢ ( ∃ 𝑥 ∈ 𝒫 𝐴 ( ♯ ‘ 𝑥 ) = 𝑛 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑥 ) = 𝑛 ) ) |
28 |
26 27
|
sylibr |
⊢ ( ( ¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ ) → ∃ 𝑥 ∈ 𝒫 𝐴 ( ♯ ‘ 𝑥 ) = 𝑛 ) |
29 |
28
|
ralrimiva |
⊢ ( ¬ 𝐴 ∈ Fin → ∀ 𝑛 ∈ ℕ ∃ 𝑥 ∈ 𝒫 𝐴 ( ♯ ‘ 𝑥 ) = 𝑛 ) |