Metamath Proof Explorer


Theorem ishashinf

Description: Any set that is not finite contains subsets of arbitrarily large finite cardinality. Cf. isinf . (Contributed by Thierry Arnoux, 5-Jul-2017)

Ref Expression
Assertion ishashinf ( ¬ 𝐴 ∈ Fin → ∀ 𝑛 ∈ ℕ ∃ 𝑥 ∈ 𝒫 𝐴 ( ♯ ‘ 𝑥 ) = 𝑛 )

Proof

Step Hyp Ref Expression
1 fzfid ( 𝑛 ∈ ℕ → ( 1 ... 𝑛 ) ∈ Fin )
2 ficardom ( ( 1 ... 𝑛 ) ∈ Fin → ( card ‘ ( 1 ... 𝑛 ) ) ∈ ω )
3 1 2 syl ( 𝑛 ∈ ℕ → ( card ‘ ( 1 ... 𝑛 ) ) ∈ ω )
4 isinf ( ¬ 𝐴 ∈ Fin → ∀ 𝑎 ∈ ω ∃ 𝑥 ( 𝑥𝐴𝑥𝑎 ) )
5 breq2 ( 𝑎 = ( card ‘ ( 1 ... 𝑛 ) ) → ( 𝑥𝑎𝑥 ≈ ( card ‘ ( 1 ... 𝑛 ) ) ) )
6 5 anbi2d ( 𝑎 = ( card ‘ ( 1 ... 𝑛 ) ) → ( ( 𝑥𝐴𝑥𝑎 ) ↔ ( 𝑥𝐴𝑥 ≈ ( card ‘ ( 1 ... 𝑛 ) ) ) ) )
7 6 exbidv ( 𝑎 = ( card ‘ ( 1 ... 𝑛 ) ) → ( ∃ 𝑥 ( 𝑥𝐴𝑥𝑎 ) ↔ ∃ 𝑥 ( 𝑥𝐴𝑥 ≈ ( card ‘ ( 1 ... 𝑛 ) ) ) ) )
8 7 rspcva ( ( ( card ‘ ( 1 ... 𝑛 ) ) ∈ ω ∧ ∀ 𝑎 ∈ ω ∃ 𝑥 ( 𝑥𝐴𝑥𝑎 ) ) → ∃ 𝑥 ( 𝑥𝐴𝑥 ≈ ( card ‘ ( 1 ... 𝑛 ) ) ) )
9 3 4 8 syl2anr ( ( ¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ ) → ∃ 𝑥 ( 𝑥𝐴𝑥 ≈ ( card ‘ ( 1 ... 𝑛 ) ) ) )
10 velpw ( 𝑥 ∈ 𝒫 𝐴𝑥𝐴 )
11 10 biimpri ( 𝑥𝐴𝑥 ∈ 𝒫 𝐴 )
12 11 a1i ( ( ¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ ) → ( 𝑥𝐴𝑥 ∈ 𝒫 𝐴 ) )
13 hasheni ( 𝑥 ≈ ( card ‘ ( 1 ... 𝑛 ) ) → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ ( card ‘ ( 1 ... 𝑛 ) ) ) )
14 13 adantl ( ( ( ¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ≈ ( card ‘ ( 1 ... 𝑛 ) ) ) → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ ( card ‘ ( 1 ... 𝑛 ) ) ) )
15 hashcard ( ( 1 ... 𝑛 ) ∈ Fin → ( ♯ ‘ ( card ‘ ( 1 ... 𝑛 ) ) ) = ( ♯ ‘ ( 1 ... 𝑛 ) ) )
16 1 15 syl ( 𝑛 ∈ ℕ → ( ♯ ‘ ( card ‘ ( 1 ... 𝑛 ) ) ) = ( ♯ ‘ ( 1 ... 𝑛 ) ) )
17 nnnn0 ( 𝑛 ∈ ℕ → 𝑛 ∈ ℕ0 )
18 hashfz1 ( 𝑛 ∈ ℕ0 → ( ♯ ‘ ( 1 ... 𝑛 ) ) = 𝑛 )
19 17 18 syl ( 𝑛 ∈ ℕ → ( ♯ ‘ ( 1 ... 𝑛 ) ) = 𝑛 )
20 16 19 eqtrd ( 𝑛 ∈ ℕ → ( ♯ ‘ ( card ‘ ( 1 ... 𝑛 ) ) ) = 𝑛 )
21 20 ad2antlr ( ( ( ¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ≈ ( card ‘ ( 1 ... 𝑛 ) ) ) → ( ♯ ‘ ( card ‘ ( 1 ... 𝑛 ) ) ) = 𝑛 )
22 14 21 eqtrd ( ( ( ¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ≈ ( card ‘ ( 1 ... 𝑛 ) ) ) → ( ♯ ‘ 𝑥 ) = 𝑛 )
23 22 ex ( ( ¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ ) → ( 𝑥 ≈ ( card ‘ ( 1 ... 𝑛 ) ) → ( ♯ ‘ 𝑥 ) = 𝑛 ) )
24 12 23 anim12d ( ( ¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ ) → ( ( 𝑥𝐴𝑥 ≈ ( card ‘ ( 1 ... 𝑛 ) ) ) → ( 𝑥 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑥 ) = 𝑛 ) ) )
25 24 eximdv ( ( ¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ ) → ( ∃ 𝑥 ( 𝑥𝐴𝑥 ≈ ( card ‘ ( 1 ... 𝑛 ) ) ) → ∃ 𝑥 ( 𝑥 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑥 ) = 𝑛 ) ) )
26 9 25 mpd ( ( ¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ ) → ∃ 𝑥 ( 𝑥 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑥 ) = 𝑛 ) )
27 df-rex ( ∃ 𝑥 ∈ 𝒫 𝐴 ( ♯ ‘ 𝑥 ) = 𝑛 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑥 ) = 𝑛 ) )
28 26 27 sylibr ( ( ¬ 𝐴 ∈ Fin ∧ 𝑛 ∈ ℕ ) → ∃ 𝑥 ∈ 𝒫 𝐴 ( ♯ ‘ 𝑥 ) = 𝑛 )
29 28 ralrimiva ( ¬ 𝐴 ∈ Fin → ∀ 𝑛 ∈ ℕ ∃ 𝑥 ∈ 𝒫 𝐴 ( ♯ ‘ 𝑥 ) = 𝑛 )