Metamath Proof Explorer


Theorem ishaus

Description: The predicate "is a Hausdorff space". (Contributed by NM, 8-Mar-2007)

Ref Expression
Hypothesis ist0.1 𝑋 = 𝐽
Assertion ishaus ( 𝐽 ∈ Haus ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑥𝑋𝑦𝑋 ( 𝑥𝑦 → ∃ 𝑛𝐽𝑚𝐽 ( 𝑥𝑛𝑦𝑚 ∧ ( 𝑛𝑚 ) = ∅ ) ) ) )

Proof

Step Hyp Ref Expression
1 ist0.1 𝑋 = 𝐽
2 unieq ( 𝑗 = 𝐽 𝑗 = 𝐽 )
3 2 1 eqtr4di ( 𝑗 = 𝐽 𝑗 = 𝑋 )
4 rexeq ( 𝑗 = 𝐽 → ( ∃ 𝑚𝑗 ( 𝑥𝑛𝑦𝑚 ∧ ( 𝑛𝑚 ) = ∅ ) ↔ ∃ 𝑚𝐽 ( 𝑥𝑛𝑦𝑚 ∧ ( 𝑛𝑚 ) = ∅ ) ) )
5 4 rexeqbi1dv ( 𝑗 = 𝐽 → ( ∃ 𝑛𝑗𝑚𝑗 ( 𝑥𝑛𝑦𝑚 ∧ ( 𝑛𝑚 ) = ∅ ) ↔ ∃ 𝑛𝐽𝑚𝐽 ( 𝑥𝑛𝑦𝑚 ∧ ( 𝑛𝑚 ) = ∅ ) ) )
6 5 imbi2d ( 𝑗 = 𝐽 → ( ( 𝑥𝑦 → ∃ 𝑛𝑗𝑚𝑗 ( 𝑥𝑛𝑦𝑚 ∧ ( 𝑛𝑚 ) = ∅ ) ) ↔ ( 𝑥𝑦 → ∃ 𝑛𝐽𝑚𝐽 ( 𝑥𝑛𝑦𝑚 ∧ ( 𝑛𝑚 ) = ∅ ) ) ) )
7 3 6 raleqbidv ( 𝑗 = 𝐽 → ( ∀ 𝑦 𝑗 ( 𝑥𝑦 → ∃ 𝑛𝑗𝑚𝑗 ( 𝑥𝑛𝑦𝑚 ∧ ( 𝑛𝑚 ) = ∅ ) ) ↔ ∀ 𝑦𝑋 ( 𝑥𝑦 → ∃ 𝑛𝐽𝑚𝐽 ( 𝑥𝑛𝑦𝑚 ∧ ( 𝑛𝑚 ) = ∅ ) ) ) )
8 3 7 raleqbidv ( 𝑗 = 𝐽 → ( ∀ 𝑥 𝑗𝑦 𝑗 ( 𝑥𝑦 → ∃ 𝑛𝑗𝑚𝑗 ( 𝑥𝑛𝑦𝑚 ∧ ( 𝑛𝑚 ) = ∅ ) ) ↔ ∀ 𝑥𝑋𝑦𝑋 ( 𝑥𝑦 → ∃ 𝑛𝐽𝑚𝐽 ( 𝑥𝑛𝑦𝑚 ∧ ( 𝑛𝑚 ) = ∅ ) ) ) )
9 df-haus Haus = { 𝑗 ∈ Top ∣ ∀ 𝑥 𝑗𝑦 𝑗 ( 𝑥𝑦 → ∃ 𝑛𝑗𝑚𝑗 ( 𝑥𝑛𝑦𝑚 ∧ ( 𝑛𝑚 ) = ∅ ) ) }
10 8 9 elrab2 ( 𝐽 ∈ Haus ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑥𝑋𝑦𝑋 ( 𝑥𝑦 → ∃ 𝑛𝐽𝑚𝐽 ( 𝑥𝑛𝑦𝑚 ∧ ( 𝑛𝑚 ) = ∅ ) ) ) )