Step |
Hyp |
Ref |
Expression |
1 |
|
ist0.1 |
⊢ 𝑋 = ∪ 𝐽 |
2 |
|
unieq |
⊢ ( 𝑗 = 𝐽 → ∪ 𝑗 = ∪ 𝐽 ) |
3 |
2 1
|
eqtr4di |
⊢ ( 𝑗 = 𝐽 → ∪ 𝑗 = 𝑋 ) |
4 |
|
rexeq |
⊢ ( 𝑗 = 𝐽 → ( ∃ 𝑚 ∈ 𝑗 ( 𝑥 ∈ 𝑛 ∧ 𝑦 ∈ 𝑚 ∧ ( 𝑛 ∩ 𝑚 ) = ∅ ) ↔ ∃ 𝑚 ∈ 𝐽 ( 𝑥 ∈ 𝑛 ∧ 𝑦 ∈ 𝑚 ∧ ( 𝑛 ∩ 𝑚 ) = ∅ ) ) ) |
5 |
4
|
rexeqbi1dv |
⊢ ( 𝑗 = 𝐽 → ( ∃ 𝑛 ∈ 𝑗 ∃ 𝑚 ∈ 𝑗 ( 𝑥 ∈ 𝑛 ∧ 𝑦 ∈ 𝑚 ∧ ( 𝑛 ∩ 𝑚 ) = ∅ ) ↔ ∃ 𝑛 ∈ 𝐽 ∃ 𝑚 ∈ 𝐽 ( 𝑥 ∈ 𝑛 ∧ 𝑦 ∈ 𝑚 ∧ ( 𝑛 ∩ 𝑚 ) = ∅ ) ) ) |
6 |
5
|
imbi2d |
⊢ ( 𝑗 = 𝐽 → ( ( 𝑥 ≠ 𝑦 → ∃ 𝑛 ∈ 𝑗 ∃ 𝑚 ∈ 𝑗 ( 𝑥 ∈ 𝑛 ∧ 𝑦 ∈ 𝑚 ∧ ( 𝑛 ∩ 𝑚 ) = ∅ ) ) ↔ ( 𝑥 ≠ 𝑦 → ∃ 𝑛 ∈ 𝐽 ∃ 𝑚 ∈ 𝐽 ( 𝑥 ∈ 𝑛 ∧ 𝑦 ∈ 𝑚 ∧ ( 𝑛 ∩ 𝑚 ) = ∅ ) ) ) ) |
7 |
3 6
|
raleqbidv |
⊢ ( 𝑗 = 𝐽 → ( ∀ 𝑦 ∈ ∪ 𝑗 ( 𝑥 ≠ 𝑦 → ∃ 𝑛 ∈ 𝑗 ∃ 𝑚 ∈ 𝑗 ( 𝑥 ∈ 𝑛 ∧ 𝑦 ∈ 𝑚 ∧ ( 𝑛 ∩ 𝑚 ) = ∅ ) ) ↔ ∀ 𝑦 ∈ 𝑋 ( 𝑥 ≠ 𝑦 → ∃ 𝑛 ∈ 𝐽 ∃ 𝑚 ∈ 𝐽 ( 𝑥 ∈ 𝑛 ∧ 𝑦 ∈ 𝑚 ∧ ( 𝑛 ∩ 𝑚 ) = ∅ ) ) ) ) |
8 |
3 7
|
raleqbidv |
⊢ ( 𝑗 = 𝐽 → ( ∀ 𝑥 ∈ ∪ 𝑗 ∀ 𝑦 ∈ ∪ 𝑗 ( 𝑥 ≠ 𝑦 → ∃ 𝑛 ∈ 𝑗 ∃ 𝑚 ∈ 𝑗 ( 𝑥 ∈ 𝑛 ∧ 𝑦 ∈ 𝑚 ∧ ( 𝑛 ∩ 𝑚 ) = ∅ ) ) ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 ≠ 𝑦 → ∃ 𝑛 ∈ 𝐽 ∃ 𝑚 ∈ 𝐽 ( 𝑥 ∈ 𝑛 ∧ 𝑦 ∈ 𝑚 ∧ ( 𝑛 ∩ 𝑚 ) = ∅ ) ) ) ) |
9 |
|
df-haus |
⊢ Haus = { 𝑗 ∈ Top ∣ ∀ 𝑥 ∈ ∪ 𝑗 ∀ 𝑦 ∈ ∪ 𝑗 ( 𝑥 ≠ 𝑦 → ∃ 𝑛 ∈ 𝑗 ∃ 𝑚 ∈ 𝑗 ( 𝑥 ∈ 𝑛 ∧ 𝑦 ∈ 𝑚 ∧ ( 𝑛 ∩ 𝑚 ) = ∅ ) ) } |
10 |
8 9
|
elrab2 |
⊢ ( 𝐽 ∈ Haus ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 ≠ 𝑦 → ∃ 𝑛 ∈ 𝐽 ∃ 𝑚 ∈ 𝐽 ( 𝑥 ∈ 𝑛 ∧ 𝑦 ∈ 𝑚 ∧ ( 𝑛 ∩ 𝑚 ) = ∅ ) ) ) ) |