Metamath Proof Explorer


Theorem ishaus3

Description: A topological space is Hausdorff iff it is both T_0 and R_1 (where R_1 means that any two topologically distinct points are separated by neighborhoods). (Contributed by Mario Carneiro, 25-Aug-2015)

Ref Expression
Assertion ishaus3 ( 𝐽 ∈ Haus ↔ ( 𝐽 ∈ Kol2 ∧ ( KQ ‘ 𝐽 ) ∈ Haus ) )

Proof

Step Hyp Ref Expression
1 haust1 ( 𝐽 ∈ Haus → 𝐽 ∈ Fre )
2 t1t0 ( 𝐽 ∈ Fre → 𝐽 ∈ Kol2 )
3 1 2 syl ( 𝐽 ∈ Haus → 𝐽 ∈ Kol2 )
4 haushmph ( 𝐽 ≃ ( KQ ‘ 𝐽 ) → ( 𝐽 ∈ Haus → ( KQ ‘ 𝐽 ) ∈ Haus ) )
5 haushmph ( ( KQ ‘ 𝐽 ) ≃ 𝐽 → ( ( KQ ‘ 𝐽 ) ∈ Haus → 𝐽 ∈ Haus ) )
6 3 4 5 ist1-5lem ( 𝐽 ∈ Haus ↔ ( 𝐽 ∈ Kol2 ∧ ( KQ ‘ 𝐽 ) ∈ Haus ) )