Step |
Hyp |
Ref |
Expression |
1 |
|
hlress.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
2 |
|
hlress.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
3 |
|
ishl |
⊢ ( 𝑊 ∈ ℂHil ↔ ( 𝑊 ∈ Ban ∧ 𝑊 ∈ ℂPreHil ) ) |
4 |
|
df-3an |
⊢ ( ( 𝑊 ∈ CMetSp ∧ 𝐾 ∈ { ℝ , ℂ } ∧ 𝑊 ∈ ℂPreHil ) ↔ ( ( 𝑊 ∈ CMetSp ∧ 𝐾 ∈ { ℝ , ℂ } ) ∧ 𝑊 ∈ ℂPreHil ) ) |
5 |
|
3ancomb |
⊢ ( ( 𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil ∧ 𝐾 ∈ { ℝ , ℂ } ) ↔ ( 𝑊 ∈ CMetSp ∧ 𝐾 ∈ { ℝ , ℂ } ∧ 𝑊 ∈ ℂPreHil ) ) |
6 |
|
cphnvc |
⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmVec ) |
7 |
1
|
isbn |
⊢ ( 𝑊 ∈ Ban ↔ ( 𝑊 ∈ NrmVec ∧ 𝑊 ∈ CMetSp ∧ 𝐹 ∈ CMetSp ) ) |
8 |
|
3anass |
⊢ ( ( 𝑊 ∈ NrmVec ∧ 𝑊 ∈ CMetSp ∧ 𝐹 ∈ CMetSp ) ↔ ( 𝑊 ∈ NrmVec ∧ ( 𝑊 ∈ CMetSp ∧ 𝐹 ∈ CMetSp ) ) ) |
9 |
7 8
|
bitri |
⊢ ( 𝑊 ∈ Ban ↔ ( 𝑊 ∈ NrmVec ∧ ( 𝑊 ∈ CMetSp ∧ 𝐹 ∈ CMetSp ) ) ) |
10 |
9
|
baib |
⊢ ( 𝑊 ∈ NrmVec → ( 𝑊 ∈ Ban ↔ ( 𝑊 ∈ CMetSp ∧ 𝐹 ∈ CMetSp ) ) ) |
11 |
6 10
|
syl |
⊢ ( 𝑊 ∈ ℂPreHil → ( 𝑊 ∈ Ban ↔ ( 𝑊 ∈ CMetSp ∧ 𝐹 ∈ CMetSp ) ) ) |
12 |
1 2
|
cphsca |
⊢ ( 𝑊 ∈ ℂPreHil → 𝐹 = ( ℂfld ↾s 𝐾 ) ) |
13 |
12
|
eleq1d |
⊢ ( 𝑊 ∈ ℂPreHil → ( 𝐹 ∈ CMetSp ↔ ( ℂfld ↾s 𝐾 ) ∈ CMetSp ) ) |
14 |
1 2
|
cphsubrg |
⊢ ( 𝑊 ∈ ℂPreHil → 𝐾 ∈ ( SubRing ‘ ℂfld ) ) |
15 |
|
cphlvec |
⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ LVec ) |
16 |
1
|
lvecdrng |
⊢ ( 𝑊 ∈ LVec → 𝐹 ∈ DivRing ) |
17 |
15 16
|
syl |
⊢ ( 𝑊 ∈ ℂPreHil → 𝐹 ∈ DivRing ) |
18 |
12 17
|
eqeltrrd |
⊢ ( 𝑊 ∈ ℂPreHil → ( ℂfld ↾s 𝐾 ) ∈ DivRing ) |
19 |
|
eqid |
⊢ ( ℂfld ↾s 𝐾 ) = ( ℂfld ↾s 𝐾 ) |
20 |
19
|
cncdrg |
⊢ ( ( 𝐾 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s 𝐾 ) ∈ DivRing ∧ ( ℂfld ↾s 𝐾 ) ∈ CMetSp ) → 𝐾 ∈ { ℝ , ℂ } ) |
21 |
20
|
3expia |
⊢ ( ( 𝐾 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s 𝐾 ) ∈ DivRing ) → ( ( ℂfld ↾s 𝐾 ) ∈ CMetSp → 𝐾 ∈ { ℝ , ℂ } ) ) |
22 |
14 18 21
|
syl2anc |
⊢ ( 𝑊 ∈ ℂPreHil → ( ( ℂfld ↾s 𝐾 ) ∈ CMetSp → 𝐾 ∈ { ℝ , ℂ } ) ) |
23 |
|
elpri |
⊢ ( 𝐾 ∈ { ℝ , ℂ } → ( 𝐾 = ℝ ∨ 𝐾 = ℂ ) ) |
24 |
|
oveq2 |
⊢ ( 𝐾 = ℝ → ( ℂfld ↾s 𝐾 ) = ( ℂfld ↾s ℝ ) ) |
25 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
26 |
25
|
recld2 |
⊢ ℝ ∈ ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) |
27 |
|
cncms |
⊢ ℂfld ∈ CMetSp |
28 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
29 |
|
eqid |
⊢ ( ℂfld ↾s ℝ ) = ( ℂfld ↾s ℝ ) |
30 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
31 |
29 30 25
|
cmsss |
⊢ ( ( ℂfld ∈ CMetSp ∧ ℝ ⊆ ℂ ) → ( ( ℂfld ↾s ℝ ) ∈ CMetSp ↔ ℝ ∈ ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) ) ) |
32 |
27 28 31
|
mp2an |
⊢ ( ( ℂfld ↾s ℝ ) ∈ CMetSp ↔ ℝ ∈ ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) ) |
33 |
26 32
|
mpbir |
⊢ ( ℂfld ↾s ℝ ) ∈ CMetSp |
34 |
24 33
|
eqeltrdi |
⊢ ( 𝐾 = ℝ → ( ℂfld ↾s 𝐾 ) ∈ CMetSp ) |
35 |
|
oveq2 |
⊢ ( 𝐾 = ℂ → ( ℂfld ↾s 𝐾 ) = ( ℂfld ↾s ℂ ) ) |
36 |
30
|
ressid |
⊢ ( ℂfld ∈ CMetSp → ( ℂfld ↾s ℂ ) = ℂfld ) |
37 |
27 36
|
ax-mp |
⊢ ( ℂfld ↾s ℂ ) = ℂfld |
38 |
37 27
|
eqeltri |
⊢ ( ℂfld ↾s ℂ ) ∈ CMetSp |
39 |
35 38
|
eqeltrdi |
⊢ ( 𝐾 = ℂ → ( ℂfld ↾s 𝐾 ) ∈ CMetSp ) |
40 |
34 39
|
jaoi |
⊢ ( ( 𝐾 = ℝ ∨ 𝐾 = ℂ ) → ( ℂfld ↾s 𝐾 ) ∈ CMetSp ) |
41 |
23 40
|
syl |
⊢ ( 𝐾 ∈ { ℝ , ℂ } → ( ℂfld ↾s 𝐾 ) ∈ CMetSp ) |
42 |
22 41
|
impbid1 |
⊢ ( 𝑊 ∈ ℂPreHil → ( ( ℂfld ↾s 𝐾 ) ∈ CMetSp ↔ 𝐾 ∈ { ℝ , ℂ } ) ) |
43 |
13 42
|
bitrd |
⊢ ( 𝑊 ∈ ℂPreHil → ( 𝐹 ∈ CMetSp ↔ 𝐾 ∈ { ℝ , ℂ } ) ) |
44 |
43
|
anbi2d |
⊢ ( 𝑊 ∈ ℂPreHil → ( ( 𝑊 ∈ CMetSp ∧ 𝐹 ∈ CMetSp ) ↔ ( 𝑊 ∈ CMetSp ∧ 𝐾 ∈ { ℝ , ℂ } ) ) ) |
45 |
11 44
|
bitrd |
⊢ ( 𝑊 ∈ ℂPreHil → ( 𝑊 ∈ Ban ↔ ( 𝑊 ∈ CMetSp ∧ 𝐾 ∈ { ℝ , ℂ } ) ) ) |
46 |
45
|
pm5.32ri |
⊢ ( ( 𝑊 ∈ Ban ∧ 𝑊 ∈ ℂPreHil ) ↔ ( ( 𝑊 ∈ CMetSp ∧ 𝐾 ∈ { ℝ , ℂ } ) ∧ 𝑊 ∈ ℂPreHil ) ) |
47 |
4 5 46
|
3bitr4ri |
⊢ ( ( 𝑊 ∈ Ban ∧ 𝑊 ∈ ℂPreHil ) ↔ ( 𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil ∧ 𝐾 ∈ { ℝ , ℂ } ) ) |
48 |
3 47
|
bitri |
⊢ ( 𝑊 ∈ ℂHil ↔ ( 𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil ∧ 𝐾 ∈ { ℝ , ℂ } ) ) |