Metamath Proof Explorer


Theorem ishl2

Description: A Hilbert space is a complete subcomplex pre-Hilbert space over RR or CC . (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Hypotheses hlress.f 𝐹 = ( Scalar ‘ 𝑊 )
hlress.k 𝐾 = ( Base ‘ 𝐹 )
Assertion ishl2 ( 𝑊 ∈ ℂHil ↔ ( 𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil ∧ 𝐾 ∈ { ℝ , ℂ } ) )

Proof

Step Hyp Ref Expression
1 hlress.f 𝐹 = ( Scalar ‘ 𝑊 )
2 hlress.k 𝐾 = ( Base ‘ 𝐹 )
3 ishl ( 𝑊 ∈ ℂHil ↔ ( 𝑊 ∈ Ban ∧ 𝑊 ∈ ℂPreHil ) )
4 df-3an ( ( 𝑊 ∈ CMetSp ∧ 𝐾 ∈ { ℝ , ℂ } ∧ 𝑊 ∈ ℂPreHil ) ↔ ( ( 𝑊 ∈ CMetSp ∧ 𝐾 ∈ { ℝ , ℂ } ) ∧ 𝑊 ∈ ℂPreHil ) )
5 3ancomb ( ( 𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil ∧ 𝐾 ∈ { ℝ , ℂ } ) ↔ ( 𝑊 ∈ CMetSp ∧ 𝐾 ∈ { ℝ , ℂ } ∧ 𝑊 ∈ ℂPreHil ) )
6 cphnvc ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmVec )
7 1 isbn ( 𝑊 ∈ Ban ↔ ( 𝑊 ∈ NrmVec ∧ 𝑊 ∈ CMetSp ∧ 𝐹 ∈ CMetSp ) )
8 3anass ( ( 𝑊 ∈ NrmVec ∧ 𝑊 ∈ CMetSp ∧ 𝐹 ∈ CMetSp ) ↔ ( 𝑊 ∈ NrmVec ∧ ( 𝑊 ∈ CMetSp ∧ 𝐹 ∈ CMetSp ) ) )
9 7 8 bitri ( 𝑊 ∈ Ban ↔ ( 𝑊 ∈ NrmVec ∧ ( 𝑊 ∈ CMetSp ∧ 𝐹 ∈ CMetSp ) ) )
10 9 baib ( 𝑊 ∈ NrmVec → ( 𝑊 ∈ Ban ↔ ( 𝑊 ∈ CMetSp ∧ 𝐹 ∈ CMetSp ) ) )
11 6 10 syl ( 𝑊 ∈ ℂPreHil → ( 𝑊 ∈ Ban ↔ ( 𝑊 ∈ CMetSp ∧ 𝐹 ∈ CMetSp ) ) )
12 1 2 cphsca ( 𝑊 ∈ ℂPreHil → 𝐹 = ( ℂflds 𝐾 ) )
13 12 eleq1d ( 𝑊 ∈ ℂPreHil → ( 𝐹 ∈ CMetSp ↔ ( ℂflds 𝐾 ) ∈ CMetSp ) )
14 1 2 cphsubrg ( 𝑊 ∈ ℂPreHil → 𝐾 ∈ ( SubRing ‘ ℂfld ) )
15 cphlvec ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ LVec )
16 1 lvecdrng ( 𝑊 ∈ LVec → 𝐹 ∈ DivRing )
17 15 16 syl ( 𝑊 ∈ ℂPreHil → 𝐹 ∈ DivRing )
18 12 17 eqeltrrd ( 𝑊 ∈ ℂPreHil → ( ℂflds 𝐾 ) ∈ DivRing )
19 eqid ( ℂflds 𝐾 ) = ( ℂflds 𝐾 )
20 19 cncdrg ( ( 𝐾 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂflds 𝐾 ) ∈ DivRing ∧ ( ℂflds 𝐾 ) ∈ CMetSp ) → 𝐾 ∈ { ℝ , ℂ } )
21 20 3expia ( ( 𝐾 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂflds 𝐾 ) ∈ DivRing ) → ( ( ℂflds 𝐾 ) ∈ CMetSp → 𝐾 ∈ { ℝ , ℂ } ) )
22 14 18 21 syl2anc ( 𝑊 ∈ ℂPreHil → ( ( ℂflds 𝐾 ) ∈ CMetSp → 𝐾 ∈ { ℝ , ℂ } ) )
23 elpri ( 𝐾 ∈ { ℝ , ℂ } → ( 𝐾 = ℝ ∨ 𝐾 = ℂ ) )
24 oveq2 ( 𝐾 = ℝ → ( ℂflds 𝐾 ) = ( ℂflds ℝ ) )
25 eqid ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld )
26 25 recld2 ℝ ∈ ( Clsd ‘ ( TopOpen ‘ ℂfld ) )
27 cncms fld ∈ CMetSp
28 ax-resscn ℝ ⊆ ℂ
29 eqid ( ℂflds ℝ ) = ( ℂflds ℝ )
30 cnfldbas ℂ = ( Base ‘ ℂfld )
31 29 30 25 cmsss ( ( ℂfld ∈ CMetSp ∧ ℝ ⊆ ℂ ) → ( ( ℂflds ℝ ) ∈ CMetSp ↔ ℝ ∈ ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) ) )
32 27 28 31 mp2an ( ( ℂflds ℝ ) ∈ CMetSp ↔ ℝ ∈ ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) )
33 26 32 mpbir ( ℂflds ℝ ) ∈ CMetSp
34 24 33 eqeltrdi ( 𝐾 = ℝ → ( ℂflds 𝐾 ) ∈ CMetSp )
35 oveq2 ( 𝐾 = ℂ → ( ℂflds 𝐾 ) = ( ℂflds ℂ ) )
36 30 ressid ( ℂfld ∈ CMetSp → ( ℂflds ℂ ) = ℂfld )
37 27 36 ax-mp ( ℂflds ℂ ) = ℂfld
38 37 27 eqeltri ( ℂflds ℂ ) ∈ CMetSp
39 35 38 eqeltrdi ( 𝐾 = ℂ → ( ℂflds 𝐾 ) ∈ CMetSp )
40 34 39 jaoi ( ( 𝐾 = ℝ ∨ 𝐾 = ℂ ) → ( ℂflds 𝐾 ) ∈ CMetSp )
41 23 40 syl ( 𝐾 ∈ { ℝ , ℂ } → ( ℂflds 𝐾 ) ∈ CMetSp )
42 22 41 impbid1 ( 𝑊 ∈ ℂPreHil → ( ( ℂflds 𝐾 ) ∈ CMetSp ↔ 𝐾 ∈ { ℝ , ℂ } ) )
43 13 42 bitrd ( 𝑊 ∈ ℂPreHil → ( 𝐹 ∈ CMetSp ↔ 𝐾 ∈ { ℝ , ℂ } ) )
44 43 anbi2d ( 𝑊 ∈ ℂPreHil → ( ( 𝑊 ∈ CMetSp ∧ 𝐹 ∈ CMetSp ) ↔ ( 𝑊 ∈ CMetSp ∧ 𝐾 ∈ { ℝ , ℂ } ) ) )
45 11 44 bitrd ( 𝑊 ∈ ℂPreHil → ( 𝑊 ∈ Ban ↔ ( 𝑊 ∈ CMetSp ∧ 𝐾 ∈ { ℝ , ℂ } ) ) )
46 45 pm5.32ri ( ( 𝑊 ∈ Ban ∧ 𝑊 ∈ ℂPreHil ) ↔ ( ( 𝑊 ∈ CMetSp ∧ 𝐾 ∈ { ℝ , ℂ } ) ∧ 𝑊 ∈ ℂPreHil ) )
47 4 5 46 3bitr4ri ( ( 𝑊 ∈ Ban ∧ 𝑊 ∈ ℂPreHil ) ↔ ( 𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil ∧ 𝐾 ∈ { ℝ , ℂ } ) )
48 3 47 bitri ( 𝑊 ∈ ℂHil ↔ ( 𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil ∧ 𝐾 ∈ { ℝ , ℂ } ) )