Step |
Hyp |
Ref |
Expression |
1 |
|
ishlat.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
ishlat.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
ishlat.s |
⊢ < = ( lt ‘ 𝐾 ) |
4 |
|
ishlat.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
5 |
|
ishlat.z |
⊢ 0 = ( 0. ‘ 𝐾 ) |
6 |
|
ishlat.u |
⊢ 1 = ( 1. ‘ 𝐾 ) |
7 |
|
ishlat.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
8 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( Atoms ‘ 𝑘 ) = ( Atoms ‘ 𝐾 ) ) |
9 |
8 7
|
eqtr4di |
⊢ ( 𝑘 = 𝐾 → ( Atoms ‘ 𝑘 ) = 𝐴 ) |
10 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( le ‘ 𝑘 ) = ( le ‘ 𝐾 ) ) |
11 |
10 2
|
eqtr4di |
⊢ ( 𝑘 = 𝐾 → ( le ‘ 𝑘 ) = ≤ ) |
12 |
11
|
breqd |
⊢ ( 𝑘 = 𝐾 → ( 𝑧 ( le ‘ 𝑘 ) ( 𝑥 ( join ‘ 𝑘 ) 𝑦 ) ↔ 𝑧 ≤ ( 𝑥 ( join ‘ 𝑘 ) 𝑦 ) ) ) |
13 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( join ‘ 𝑘 ) = ( join ‘ 𝐾 ) ) |
14 |
13 4
|
eqtr4di |
⊢ ( 𝑘 = 𝐾 → ( join ‘ 𝑘 ) = ∨ ) |
15 |
14
|
oveqd |
⊢ ( 𝑘 = 𝐾 → ( 𝑥 ( join ‘ 𝑘 ) 𝑦 ) = ( 𝑥 ∨ 𝑦 ) ) |
16 |
15
|
breq2d |
⊢ ( 𝑘 = 𝐾 → ( 𝑧 ≤ ( 𝑥 ( join ‘ 𝑘 ) 𝑦 ) ↔ 𝑧 ≤ ( 𝑥 ∨ 𝑦 ) ) ) |
17 |
12 16
|
bitrd |
⊢ ( 𝑘 = 𝐾 → ( 𝑧 ( le ‘ 𝑘 ) ( 𝑥 ( join ‘ 𝑘 ) 𝑦 ) ↔ 𝑧 ≤ ( 𝑥 ∨ 𝑦 ) ) ) |
18 |
17
|
3anbi3d |
⊢ ( 𝑘 = 𝐾 → ( ( 𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ( le ‘ 𝑘 ) ( 𝑥 ( join ‘ 𝑘 ) 𝑦 ) ) ↔ ( 𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ ( 𝑥 ∨ 𝑦 ) ) ) ) |
19 |
9 18
|
rexeqbidv |
⊢ ( 𝑘 = 𝐾 → ( ∃ 𝑧 ∈ ( Atoms ‘ 𝑘 ) ( 𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ( le ‘ 𝑘 ) ( 𝑥 ( join ‘ 𝑘 ) 𝑦 ) ) ↔ ∃ 𝑧 ∈ 𝐴 ( 𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ ( 𝑥 ∨ 𝑦 ) ) ) ) |
20 |
19
|
imbi2d |
⊢ ( 𝑘 = 𝐾 → ( ( 𝑥 ≠ 𝑦 → ∃ 𝑧 ∈ ( Atoms ‘ 𝑘 ) ( 𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ( le ‘ 𝑘 ) ( 𝑥 ( join ‘ 𝑘 ) 𝑦 ) ) ) ↔ ( 𝑥 ≠ 𝑦 → ∃ 𝑧 ∈ 𝐴 ( 𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ ( 𝑥 ∨ 𝑦 ) ) ) ) ) |
21 |
9 20
|
raleqbidv |
⊢ ( 𝑘 = 𝐾 → ( ∀ 𝑦 ∈ ( Atoms ‘ 𝑘 ) ( 𝑥 ≠ 𝑦 → ∃ 𝑧 ∈ ( Atoms ‘ 𝑘 ) ( 𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ( le ‘ 𝑘 ) ( 𝑥 ( join ‘ 𝑘 ) 𝑦 ) ) ) ↔ ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≠ 𝑦 → ∃ 𝑧 ∈ 𝐴 ( 𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ ( 𝑥 ∨ 𝑦 ) ) ) ) ) |
22 |
9 21
|
raleqbidv |
⊢ ( 𝑘 = 𝐾 → ( ∀ 𝑥 ∈ ( Atoms ‘ 𝑘 ) ∀ 𝑦 ∈ ( Atoms ‘ 𝑘 ) ( 𝑥 ≠ 𝑦 → ∃ 𝑧 ∈ ( Atoms ‘ 𝑘 ) ( 𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ( le ‘ 𝑘 ) ( 𝑥 ( join ‘ 𝑘 ) 𝑦 ) ) ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≠ 𝑦 → ∃ 𝑧 ∈ 𝐴 ( 𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ ( 𝑥 ∨ 𝑦 ) ) ) ) ) |
23 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( Base ‘ 𝑘 ) = ( Base ‘ 𝐾 ) ) |
24 |
23 1
|
eqtr4di |
⊢ ( 𝑘 = 𝐾 → ( Base ‘ 𝑘 ) = 𝐵 ) |
25 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( lt ‘ 𝑘 ) = ( lt ‘ 𝐾 ) ) |
26 |
25 3
|
eqtr4di |
⊢ ( 𝑘 = 𝐾 → ( lt ‘ 𝑘 ) = < ) |
27 |
26
|
breqd |
⊢ ( 𝑘 = 𝐾 → ( ( 0. ‘ 𝑘 ) ( lt ‘ 𝑘 ) 𝑥 ↔ ( 0. ‘ 𝑘 ) < 𝑥 ) ) |
28 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( 0. ‘ 𝑘 ) = ( 0. ‘ 𝐾 ) ) |
29 |
28 5
|
eqtr4di |
⊢ ( 𝑘 = 𝐾 → ( 0. ‘ 𝑘 ) = 0 ) |
30 |
29
|
breq1d |
⊢ ( 𝑘 = 𝐾 → ( ( 0. ‘ 𝑘 ) < 𝑥 ↔ 0 < 𝑥 ) ) |
31 |
27 30
|
bitrd |
⊢ ( 𝑘 = 𝐾 → ( ( 0. ‘ 𝑘 ) ( lt ‘ 𝑘 ) 𝑥 ↔ 0 < 𝑥 ) ) |
32 |
26
|
breqd |
⊢ ( 𝑘 = 𝐾 → ( 𝑥 ( lt ‘ 𝑘 ) 𝑦 ↔ 𝑥 < 𝑦 ) ) |
33 |
31 32
|
anbi12d |
⊢ ( 𝑘 = 𝐾 → ( ( ( 0. ‘ 𝑘 ) ( lt ‘ 𝑘 ) 𝑥 ∧ 𝑥 ( lt ‘ 𝑘 ) 𝑦 ) ↔ ( 0 < 𝑥 ∧ 𝑥 < 𝑦 ) ) ) |
34 |
26
|
breqd |
⊢ ( 𝑘 = 𝐾 → ( 𝑦 ( lt ‘ 𝑘 ) 𝑧 ↔ 𝑦 < 𝑧 ) ) |
35 |
26
|
breqd |
⊢ ( 𝑘 = 𝐾 → ( 𝑧 ( lt ‘ 𝑘 ) ( 1. ‘ 𝑘 ) ↔ 𝑧 < ( 1. ‘ 𝑘 ) ) ) |
36 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( 1. ‘ 𝑘 ) = ( 1. ‘ 𝐾 ) ) |
37 |
36 6
|
eqtr4di |
⊢ ( 𝑘 = 𝐾 → ( 1. ‘ 𝑘 ) = 1 ) |
38 |
37
|
breq2d |
⊢ ( 𝑘 = 𝐾 → ( 𝑧 < ( 1. ‘ 𝑘 ) ↔ 𝑧 < 1 ) ) |
39 |
35 38
|
bitrd |
⊢ ( 𝑘 = 𝐾 → ( 𝑧 ( lt ‘ 𝑘 ) ( 1. ‘ 𝑘 ) ↔ 𝑧 < 1 ) ) |
40 |
34 39
|
anbi12d |
⊢ ( 𝑘 = 𝐾 → ( ( 𝑦 ( lt ‘ 𝑘 ) 𝑧 ∧ 𝑧 ( lt ‘ 𝑘 ) ( 1. ‘ 𝑘 ) ) ↔ ( 𝑦 < 𝑧 ∧ 𝑧 < 1 ) ) ) |
41 |
33 40
|
anbi12d |
⊢ ( 𝑘 = 𝐾 → ( ( ( ( 0. ‘ 𝑘 ) ( lt ‘ 𝑘 ) 𝑥 ∧ 𝑥 ( lt ‘ 𝑘 ) 𝑦 ) ∧ ( 𝑦 ( lt ‘ 𝑘 ) 𝑧 ∧ 𝑧 ( lt ‘ 𝑘 ) ( 1. ‘ 𝑘 ) ) ) ↔ ( ( 0 < 𝑥 ∧ 𝑥 < 𝑦 ) ∧ ( 𝑦 < 𝑧 ∧ 𝑧 < 1 ) ) ) ) |
42 |
24 41
|
rexeqbidv |
⊢ ( 𝑘 = 𝐾 → ( ∃ 𝑧 ∈ ( Base ‘ 𝑘 ) ( ( ( 0. ‘ 𝑘 ) ( lt ‘ 𝑘 ) 𝑥 ∧ 𝑥 ( lt ‘ 𝑘 ) 𝑦 ) ∧ ( 𝑦 ( lt ‘ 𝑘 ) 𝑧 ∧ 𝑧 ( lt ‘ 𝑘 ) ( 1. ‘ 𝑘 ) ) ) ↔ ∃ 𝑧 ∈ 𝐵 ( ( 0 < 𝑥 ∧ 𝑥 < 𝑦 ) ∧ ( 𝑦 < 𝑧 ∧ 𝑧 < 1 ) ) ) ) |
43 |
24 42
|
rexeqbidv |
⊢ ( 𝑘 = 𝐾 → ( ∃ 𝑦 ∈ ( Base ‘ 𝑘 ) ∃ 𝑧 ∈ ( Base ‘ 𝑘 ) ( ( ( 0. ‘ 𝑘 ) ( lt ‘ 𝑘 ) 𝑥 ∧ 𝑥 ( lt ‘ 𝑘 ) 𝑦 ) ∧ ( 𝑦 ( lt ‘ 𝑘 ) 𝑧 ∧ 𝑧 ( lt ‘ 𝑘 ) ( 1. ‘ 𝑘 ) ) ) ↔ ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐵 ( ( 0 < 𝑥 ∧ 𝑥 < 𝑦 ) ∧ ( 𝑦 < 𝑧 ∧ 𝑧 < 1 ) ) ) ) |
44 |
24 43
|
rexeqbidv |
⊢ ( 𝑘 = 𝐾 → ( ∃ 𝑥 ∈ ( Base ‘ 𝑘 ) ∃ 𝑦 ∈ ( Base ‘ 𝑘 ) ∃ 𝑧 ∈ ( Base ‘ 𝑘 ) ( ( ( 0. ‘ 𝑘 ) ( lt ‘ 𝑘 ) 𝑥 ∧ 𝑥 ( lt ‘ 𝑘 ) 𝑦 ) ∧ ( 𝑦 ( lt ‘ 𝑘 ) 𝑧 ∧ 𝑧 ( lt ‘ 𝑘 ) ( 1. ‘ 𝑘 ) ) ) ↔ ∃ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐵 ( ( 0 < 𝑥 ∧ 𝑥 < 𝑦 ) ∧ ( 𝑦 < 𝑧 ∧ 𝑧 < 1 ) ) ) ) |
45 |
22 44
|
anbi12d |
⊢ ( 𝑘 = 𝐾 → ( ( ∀ 𝑥 ∈ ( Atoms ‘ 𝑘 ) ∀ 𝑦 ∈ ( Atoms ‘ 𝑘 ) ( 𝑥 ≠ 𝑦 → ∃ 𝑧 ∈ ( Atoms ‘ 𝑘 ) ( 𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ( le ‘ 𝑘 ) ( 𝑥 ( join ‘ 𝑘 ) 𝑦 ) ) ) ∧ ∃ 𝑥 ∈ ( Base ‘ 𝑘 ) ∃ 𝑦 ∈ ( Base ‘ 𝑘 ) ∃ 𝑧 ∈ ( Base ‘ 𝑘 ) ( ( ( 0. ‘ 𝑘 ) ( lt ‘ 𝑘 ) 𝑥 ∧ 𝑥 ( lt ‘ 𝑘 ) 𝑦 ) ∧ ( 𝑦 ( lt ‘ 𝑘 ) 𝑧 ∧ 𝑧 ( lt ‘ 𝑘 ) ( 1. ‘ 𝑘 ) ) ) ) ↔ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≠ 𝑦 → ∃ 𝑧 ∈ 𝐴 ( 𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ ( 𝑥 ∨ 𝑦 ) ) ) ∧ ∃ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐵 ( ( 0 < 𝑥 ∧ 𝑥 < 𝑦 ) ∧ ( 𝑦 < 𝑧 ∧ 𝑧 < 1 ) ) ) ) ) |
46 |
|
df-hlat |
⊢ HL = { 𝑘 ∈ ( ( OML ∩ CLat ) ∩ CvLat ) ∣ ( ∀ 𝑥 ∈ ( Atoms ‘ 𝑘 ) ∀ 𝑦 ∈ ( Atoms ‘ 𝑘 ) ( 𝑥 ≠ 𝑦 → ∃ 𝑧 ∈ ( Atoms ‘ 𝑘 ) ( 𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ( le ‘ 𝑘 ) ( 𝑥 ( join ‘ 𝑘 ) 𝑦 ) ) ) ∧ ∃ 𝑥 ∈ ( Base ‘ 𝑘 ) ∃ 𝑦 ∈ ( Base ‘ 𝑘 ) ∃ 𝑧 ∈ ( Base ‘ 𝑘 ) ( ( ( 0. ‘ 𝑘 ) ( lt ‘ 𝑘 ) 𝑥 ∧ 𝑥 ( lt ‘ 𝑘 ) 𝑦 ) ∧ ( 𝑦 ( lt ‘ 𝑘 ) 𝑧 ∧ 𝑧 ( lt ‘ 𝑘 ) ( 1. ‘ 𝑘 ) ) ) ) } |
47 |
45 46
|
elrab2 |
⊢ ( 𝐾 ∈ HL ↔ ( 𝐾 ∈ ( ( OML ∩ CLat ) ∩ CvLat ) ∧ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≠ 𝑦 → ∃ 𝑧 ∈ 𝐴 ( 𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ ( 𝑥 ∨ 𝑦 ) ) ) ∧ ∃ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐵 ( ( 0 < 𝑥 ∧ 𝑥 < 𝑦 ) ∧ ( 𝑦 < 𝑧 ∧ 𝑧 < 1 ) ) ) ) ) |
48 |
|
elin |
⊢ ( 𝐾 ∈ ( OML ∩ CLat ) ↔ ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ) ) |
49 |
48
|
anbi1i |
⊢ ( ( 𝐾 ∈ ( OML ∩ CLat ) ∧ 𝐾 ∈ CvLat ) ↔ ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ) ∧ 𝐾 ∈ CvLat ) ) |
50 |
|
elin |
⊢ ( 𝐾 ∈ ( ( OML ∩ CLat ) ∩ CvLat ) ↔ ( 𝐾 ∈ ( OML ∩ CLat ) ∧ 𝐾 ∈ CvLat ) ) |
51 |
|
df-3an |
⊢ ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ↔ ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ) ∧ 𝐾 ∈ CvLat ) ) |
52 |
49 50 51
|
3bitr4ri |
⊢ ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ↔ 𝐾 ∈ ( ( OML ∩ CLat ) ∩ CvLat ) ) |
53 |
52
|
anbi1i |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≠ 𝑦 → ∃ 𝑧 ∈ 𝐴 ( 𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ ( 𝑥 ∨ 𝑦 ) ) ) ∧ ∃ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐵 ( ( 0 < 𝑥 ∧ 𝑥 < 𝑦 ) ∧ ( 𝑦 < 𝑧 ∧ 𝑧 < 1 ) ) ) ) ↔ ( 𝐾 ∈ ( ( OML ∩ CLat ) ∩ CvLat ) ∧ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≠ 𝑦 → ∃ 𝑧 ∈ 𝐴 ( 𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ ( 𝑥 ∨ 𝑦 ) ) ) ∧ ∃ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐵 ( ( 0 < 𝑥 ∧ 𝑥 < 𝑦 ) ∧ ( 𝑦 < 𝑧 ∧ 𝑧 < 1 ) ) ) ) ) |
54 |
47 53
|
bitr4i |
⊢ ( 𝐾 ∈ HL ↔ ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≠ 𝑦 → ∃ 𝑧 ∈ 𝐴 ( 𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ ( 𝑥 ∨ 𝑦 ) ) ) ∧ ∃ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐵 ( ( 0 < 𝑥 ∧ 𝑥 < 𝑦 ) ∧ ( 𝑦 < 𝑧 ∧ 𝑧 < 1 ) ) ) ) ) |