Metamath Proof Explorer


Theorem ishlat3N

Description: The predicate "is a Hilbert lattice". Note that the superposition principle is expressed in the compact form E. z e. A ( x .\/ z ) = ( y .\/ z ) . The exchange property and atomicity are provided by K e. CvLat , and "minimum height 4" is shown explicitly. (Contributed by NM, 8-Nov-2012) (New usage is discouraged.)

Ref Expression
Hypotheses ishlat.b 𝐵 = ( Base ‘ 𝐾 )
ishlat.l = ( le ‘ 𝐾 )
ishlat.s < = ( lt ‘ 𝐾 )
ishlat.j = ( join ‘ 𝐾 )
ishlat.z 0 = ( 0. ‘ 𝐾 )
ishlat.u 1 = ( 1. ‘ 𝐾 )
ishlat.a 𝐴 = ( Atoms ‘ 𝐾 )
Assertion ishlat3N ( 𝐾 ∈ HL ↔ ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ ( ∀ 𝑥𝐴𝑦𝐴𝑧𝐴 ( 𝑥 𝑧 ) = ( 𝑦 𝑧 ) ∧ ∃ 𝑥𝐵𝑦𝐵𝑧𝐵 ( ( 0 < 𝑥𝑥 < 𝑦 ) ∧ ( 𝑦 < 𝑧𝑧 < 1 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 ishlat.b 𝐵 = ( Base ‘ 𝐾 )
2 ishlat.l = ( le ‘ 𝐾 )
3 ishlat.s < = ( lt ‘ 𝐾 )
4 ishlat.j = ( join ‘ 𝐾 )
5 ishlat.z 0 = ( 0. ‘ 𝐾 )
6 ishlat.u 1 = ( 1. ‘ 𝐾 )
7 ishlat.a 𝐴 = ( Atoms ‘ 𝐾 )
8 1 2 3 4 5 6 7 ishlat1 ( 𝐾 ∈ HL ↔ ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ ( ∀ 𝑥𝐴𝑦𝐴 ( 𝑥𝑦 → ∃ 𝑧𝐴 ( 𝑧𝑥𝑧𝑦𝑧 ( 𝑥 𝑦 ) ) ) ∧ ∃ 𝑥𝐵𝑦𝐵𝑧𝐵 ( ( 0 < 𝑥𝑥 < 𝑦 ) ∧ ( 𝑦 < 𝑧𝑧 < 1 ) ) ) ) )
9 simpll3 ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ ( 𝑥𝐴𝑦𝐴 ) ) ∧ 𝑧𝐴 ) → 𝐾 ∈ CvLat )
10 simplrl ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ ( 𝑥𝐴𝑦𝐴 ) ) ∧ 𝑧𝐴 ) → 𝑥𝐴 )
11 simplrr ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ ( 𝑥𝐴𝑦𝐴 ) ) ∧ 𝑧𝐴 ) → 𝑦𝐴 )
12 simpr ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ ( 𝑥𝐴𝑦𝐴 ) ) ∧ 𝑧𝐴 ) → 𝑧𝐴 )
13 7 2 4 cvlsupr3 ( ( 𝐾 ∈ CvLat ∧ ( 𝑥𝐴𝑦𝐴𝑧𝐴 ) ) → ( ( 𝑥 𝑧 ) = ( 𝑦 𝑧 ) ↔ ( 𝑥𝑦 → ( 𝑧𝑥𝑧𝑦𝑧 ( 𝑥 𝑦 ) ) ) ) )
14 9 10 11 12 13 syl13anc ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ ( 𝑥𝐴𝑦𝐴 ) ) ∧ 𝑧𝐴 ) → ( ( 𝑥 𝑧 ) = ( 𝑦 𝑧 ) ↔ ( 𝑥𝑦 → ( 𝑧𝑥𝑧𝑦𝑧 ( 𝑥 𝑦 ) ) ) ) )
15 14 rexbidva ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ ( 𝑥𝐴𝑦𝐴 ) ) → ( ∃ 𝑧𝐴 ( 𝑥 𝑧 ) = ( 𝑦 𝑧 ) ↔ ∃ 𝑧𝐴 ( 𝑥𝑦 → ( 𝑧𝑥𝑧𝑦𝑧 ( 𝑥 𝑦 ) ) ) ) )
16 ne0i ( 𝑥𝐴𝐴 ≠ ∅ )
17 16 ad2antrl ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ ( 𝑥𝐴𝑦𝐴 ) ) → 𝐴 ≠ ∅ )
18 r19.37zv ( 𝐴 ≠ ∅ → ( ∃ 𝑧𝐴 ( 𝑥𝑦 → ( 𝑧𝑥𝑧𝑦𝑧 ( 𝑥 𝑦 ) ) ) ↔ ( 𝑥𝑦 → ∃ 𝑧𝐴 ( 𝑧𝑥𝑧𝑦𝑧 ( 𝑥 𝑦 ) ) ) ) )
19 17 18 syl ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ ( 𝑥𝐴𝑦𝐴 ) ) → ( ∃ 𝑧𝐴 ( 𝑥𝑦 → ( 𝑧𝑥𝑧𝑦𝑧 ( 𝑥 𝑦 ) ) ) ↔ ( 𝑥𝑦 → ∃ 𝑧𝐴 ( 𝑧𝑥𝑧𝑦𝑧 ( 𝑥 𝑦 ) ) ) ) )
20 15 19 bitr2d ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ ( 𝑥𝐴𝑦𝐴 ) ) → ( ( 𝑥𝑦 → ∃ 𝑧𝐴 ( 𝑧𝑥𝑧𝑦𝑧 ( 𝑥 𝑦 ) ) ) ↔ ∃ 𝑧𝐴 ( 𝑥 𝑧 ) = ( 𝑦 𝑧 ) ) )
21 20 2ralbidva ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) → ( ∀ 𝑥𝐴𝑦𝐴 ( 𝑥𝑦 → ∃ 𝑧𝐴 ( 𝑧𝑥𝑧𝑦𝑧 ( 𝑥 𝑦 ) ) ) ↔ ∀ 𝑥𝐴𝑦𝐴𝑧𝐴 ( 𝑥 𝑧 ) = ( 𝑦 𝑧 ) ) )
22 21 anbi1d ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) → ( ( ∀ 𝑥𝐴𝑦𝐴 ( 𝑥𝑦 → ∃ 𝑧𝐴 ( 𝑧𝑥𝑧𝑦𝑧 ( 𝑥 𝑦 ) ) ) ∧ ∃ 𝑥𝐵𝑦𝐵𝑧𝐵 ( ( 0 < 𝑥𝑥 < 𝑦 ) ∧ ( 𝑦 < 𝑧𝑧 < 1 ) ) ) ↔ ( ∀ 𝑥𝐴𝑦𝐴𝑧𝐴 ( 𝑥 𝑧 ) = ( 𝑦 𝑧 ) ∧ ∃ 𝑥𝐵𝑦𝐵𝑧𝐵 ( ( 0 < 𝑥𝑥 < 𝑦 ) ∧ ( 𝑦 < 𝑧𝑧 < 1 ) ) ) ) )
23 22 pm5.32i ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ ( ∀ 𝑥𝐴𝑦𝐴 ( 𝑥𝑦 → ∃ 𝑧𝐴 ( 𝑧𝑥𝑧𝑦𝑧 ( 𝑥 𝑦 ) ) ) ∧ ∃ 𝑥𝐵𝑦𝐵𝑧𝐵 ( ( 0 < 𝑥𝑥 < 𝑦 ) ∧ ( 𝑦 < 𝑧𝑧 < 1 ) ) ) ) ↔ ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ ( ∀ 𝑥𝐴𝑦𝐴𝑧𝐴 ( 𝑥 𝑧 ) = ( 𝑦 𝑧 ) ∧ ∃ 𝑥𝐵𝑦𝐵𝑧𝐵 ( ( 0 < 𝑥𝑥 < 𝑦 ) ∧ ( 𝑦 < 𝑧𝑧 < 1 ) ) ) ) )
24 8 23 bitri ( 𝐾 ∈ HL ↔ ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ ( ∀ 𝑥𝐴𝑦𝐴𝑧𝐴 ( 𝑥 𝑧 ) = ( 𝑦 𝑧 ) ∧ ∃ 𝑥𝐵𝑦𝐵𝑧𝐵 ( ( 0 < 𝑥𝑥 < 𝑦 ) ∧ ( 𝑦 < 𝑧𝑧 < 1 ) ) ) ) )