Step |
Hyp |
Ref |
Expression |
1 |
|
ishlati.1 |
⊢ 𝐾 ∈ OML |
2 |
|
ishlati.2 |
⊢ 𝐾 ∈ CLat |
3 |
|
ishlati.3 |
⊢ 𝐾 ∈ AtLat |
4 |
|
ishlati.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
5 |
|
ishlati.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
6 |
|
ishlati.s |
⊢ < = ( lt ‘ 𝐾 ) |
7 |
|
ishlati.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
8 |
|
ishlati.z |
⊢ 0 = ( 0. ‘ 𝐾 ) |
9 |
|
ishlati.u |
⊢ 1 = ( 1. ‘ 𝐾 ) |
10 |
|
ishlati.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
11 |
|
ishlati.9 |
⊢ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝑥 ≠ 𝑦 → ∃ 𝑧 ∈ 𝐴 ( 𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ ( 𝑥 ∨ 𝑦 ) ) ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( ¬ 𝑥 ≤ 𝑧 ∧ 𝑥 ≤ ( 𝑧 ∨ 𝑦 ) ) → 𝑦 ≤ ( 𝑧 ∨ 𝑥 ) ) ) |
12 |
|
ishlati.10 |
⊢ ∃ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐵 ( ( 0 < 𝑥 ∧ 𝑥 < 𝑦 ) ∧ ( 𝑦 < 𝑧 ∧ 𝑧 < 1 ) ) |
13 |
1 2 3
|
3pm3.2i |
⊢ ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) |
14 |
11 12
|
pm3.2i |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝑥 ≠ 𝑦 → ∃ 𝑧 ∈ 𝐴 ( 𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ ( 𝑥 ∨ 𝑦 ) ) ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( ¬ 𝑥 ≤ 𝑧 ∧ 𝑥 ≤ ( 𝑧 ∨ 𝑦 ) ) → 𝑦 ≤ ( 𝑧 ∨ 𝑥 ) ) ) ∧ ∃ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐵 ( ( 0 < 𝑥 ∧ 𝑥 < 𝑦 ) ∧ ( 𝑦 < 𝑧 ∧ 𝑧 < 1 ) ) ) |
15 |
4 5 6 7 8 9 10
|
ishlat2 |
⊢ ( 𝐾 ∈ HL ↔ ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝑥 ≠ 𝑦 → ∃ 𝑧 ∈ 𝐴 ( 𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧 ≤ ( 𝑥 ∨ 𝑦 ) ) ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( ¬ 𝑥 ≤ 𝑧 ∧ 𝑥 ≤ ( 𝑧 ∨ 𝑦 ) ) → 𝑦 ≤ ( 𝑧 ∨ 𝑥 ) ) ) ∧ ∃ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐵 ( ( 0 < 𝑥 ∧ 𝑥 < 𝑦 ) ∧ ( 𝑦 < 𝑧 ∧ 𝑧 < 1 ) ) ) ) ) |
16 |
13 14 15
|
mpbir2an |
⊢ 𝐾 ∈ HL |