| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ishlg.p | 
							⊢ 𝑃  =  ( Base ‘ 𝐺 )  | 
						
						
							| 2 | 
							
								
							 | 
							ishlg.i | 
							⊢ 𝐼  =  ( Itv ‘ 𝐺 )  | 
						
						
							| 3 | 
							
								
							 | 
							ishlg.k | 
							⊢ 𝐾  =  ( hlG ‘ 𝐺 )  | 
						
						
							| 4 | 
							
								
							 | 
							ishlg.a | 
							⊢ ( 𝜑  →  𝐴  ∈  𝑃 )  | 
						
						
							| 5 | 
							
								
							 | 
							ishlg.b | 
							⊢ ( 𝜑  →  𝐵  ∈  𝑃 )  | 
						
						
							| 6 | 
							
								
							 | 
							ishlg.c | 
							⊢ ( 𝜑  →  𝐶  ∈  𝑃 )  | 
						
						
							| 7 | 
							
								
							 | 
							ishlg.g | 
							⊢ ( 𝜑  →  𝐺  ∈  𝑉 )  | 
						
						
							| 8 | 
							
								
							 | 
							simpl | 
							⊢ ( ( 𝑎  =  𝐴  ∧  𝑏  =  𝐵 )  →  𝑎  =  𝐴 )  | 
						
						
							| 9 | 
							
								8
							 | 
							neeq1d | 
							⊢ ( ( 𝑎  =  𝐴  ∧  𝑏  =  𝐵 )  →  ( 𝑎  ≠  𝐶  ↔  𝐴  ≠  𝐶 ) )  | 
						
						
							| 10 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝑎  =  𝐴  ∧  𝑏  =  𝐵 )  →  𝑏  =  𝐵 )  | 
						
						
							| 11 | 
							
								10
							 | 
							neeq1d | 
							⊢ ( ( 𝑎  =  𝐴  ∧  𝑏  =  𝐵 )  →  ( 𝑏  ≠  𝐶  ↔  𝐵  ≠  𝐶 ) )  | 
						
						
							| 12 | 
							
								10
							 | 
							oveq2d | 
							⊢ ( ( 𝑎  =  𝐴  ∧  𝑏  =  𝐵 )  →  ( 𝐶 𝐼 𝑏 )  =  ( 𝐶 𝐼 𝐵 ) )  | 
						
						
							| 13 | 
							
								8 12
							 | 
							eleq12d | 
							⊢ ( ( 𝑎  =  𝐴  ∧  𝑏  =  𝐵 )  →  ( 𝑎  ∈  ( 𝐶 𝐼 𝑏 )  ↔  𝐴  ∈  ( 𝐶 𝐼 𝐵 ) ) )  | 
						
						
							| 14 | 
							
								8
							 | 
							oveq2d | 
							⊢ ( ( 𝑎  =  𝐴  ∧  𝑏  =  𝐵 )  →  ( 𝐶 𝐼 𝑎 )  =  ( 𝐶 𝐼 𝐴 ) )  | 
						
						
							| 15 | 
							
								10 14
							 | 
							eleq12d | 
							⊢ ( ( 𝑎  =  𝐴  ∧  𝑏  =  𝐵 )  →  ( 𝑏  ∈  ( 𝐶 𝐼 𝑎 )  ↔  𝐵  ∈  ( 𝐶 𝐼 𝐴 ) ) )  | 
						
						
							| 16 | 
							
								13 15
							 | 
							orbi12d | 
							⊢ ( ( 𝑎  =  𝐴  ∧  𝑏  =  𝐵 )  →  ( ( 𝑎  ∈  ( 𝐶 𝐼 𝑏 )  ∨  𝑏  ∈  ( 𝐶 𝐼 𝑎 ) )  ↔  ( 𝐴  ∈  ( 𝐶 𝐼 𝐵 )  ∨  𝐵  ∈  ( 𝐶 𝐼 𝐴 ) ) ) )  | 
						
						
							| 17 | 
							
								9 11 16
							 | 
							3anbi123d | 
							⊢ ( ( 𝑎  =  𝐴  ∧  𝑏  =  𝐵 )  →  ( ( 𝑎  ≠  𝐶  ∧  𝑏  ≠  𝐶  ∧  ( 𝑎  ∈  ( 𝐶 𝐼 𝑏 )  ∨  𝑏  ∈  ( 𝐶 𝐼 𝑎 ) ) )  ↔  ( 𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶  ∧  ( 𝐴  ∈  ( 𝐶 𝐼 𝐵 )  ∨  𝐵  ∈  ( 𝐶 𝐼 𝐴 ) ) ) ) )  | 
						
						
							| 18 | 
							
								
							 | 
							eqid | 
							⊢ { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  𝑃  ∧  𝑏  ∈  𝑃 )  ∧  ( 𝑎  ≠  𝐶  ∧  𝑏  ≠  𝐶  ∧  ( 𝑎  ∈  ( 𝐶 𝐼 𝑏 )  ∨  𝑏  ∈  ( 𝐶 𝐼 𝑎 ) ) ) ) }  =  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  𝑃  ∧  𝑏  ∈  𝑃 )  ∧  ( 𝑎  ≠  𝐶  ∧  𝑏  ≠  𝐶  ∧  ( 𝑎  ∈  ( 𝐶 𝐼 𝑏 )  ∨  𝑏  ∈  ( 𝐶 𝐼 𝑎 ) ) ) ) }  | 
						
						
							| 19 | 
							
								17 18
							 | 
							brab2a | 
							⊢ ( 𝐴 { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  𝑃  ∧  𝑏  ∈  𝑃 )  ∧  ( 𝑎  ≠  𝐶  ∧  𝑏  ≠  𝐶  ∧  ( 𝑎  ∈  ( 𝐶 𝐼 𝑏 )  ∨  𝑏  ∈  ( 𝐶 𝐼 𝑎 ) ) ) ) } 𝐵  ↔  ( ( 𝐴  ∈  𝑃  ∧  𝐵  ∈  𝑃 )  ∧  ( 𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶  ∧  ( 𝐴  ∈  ( 𝐶 𝐼 𝐵 )  ∨  𝐵  ∈  ( 𝐶 𝐼 𝐴 ) ) ) ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							a1i | 
							⊢ ( 𝜑  →  ( 𝐴 { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  𝑃  ∧  𝑏  ∈  𝑃 )  ∧  ( 𝑎  ≠  𝐶  ∧  𝑏  ≠  𝐶  ∧  ( 𝑎  ∈  ( 𝐶 𝐼 𝑏 )  ∨  𝑏  ∈  ( 𝐶 𝐼 𝑎 ) ) ) ) } 𝐵  ↔  ( ( 𝐴  ∈  𝑃  ∧  𝐵  ∈  𝑃 )  ∧  ( 𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶  ∧  ( 𝐴  ∈  ( 𝐶 𝐼 𝐵 )  ∨  𝐵  ∈  ( 𝐶 𝐼 𝐴 ) ) ) ) ) )  | 
						
						
							| 21 | 
							
								
							 | 
							elex | 
							⊢ ( 𝐺  ∈  𝑉  →  𝐺  ∈  V )  | 
						
						
							| 22 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑔  =  𝐺  →  ( Base ‘ 𝑔 )  =  ( Base ‘ 𝐺 ) )  | 
						
						
							| 23 | 
							
								22 1
							 | 
							eqtr4di | 
							⊢ ( 𝑔  =  𝐺  →  ( Base ‘ 𝑔 )  =  𝑃 )  | 
						
						
							| 24 | 
							
								23
							 | 
							eleq2d | 
							⊢ ( 𝑔  =  𝐺  →  ( 𝑎  ∈  ( Base ‘ 𝑔 )  ↔  𝑎  ∈  𝑃 ) )  | 
						
						
							| 25 | 
							
								23
							 | 
							eleq2d | 
							⊢ ( 𝑔  =  𝐺  →  ( 𝑏  ∈  ( Base ‘ 𝑔 )  ↔  𝑏  ∈  𝑃 ) )  | 
						
						
							| 26 | 
							
								24 25
							 | 
							anbi12d | 
							⊢ ( 𝑔  =  𝐺  →  ( ( 𝑎  ∈  ( Base ‘ 𝑔 )  ∧  𝑏  ∈  ( Base ‘ 𝑔 ) )  ↔  ( 𝑎  ∈  𝑃  ∧  𝑏  ∈  𝑃 ) ) )  | 
						
						
							| 27 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑔  =  𝐺  →  ( Itv ‘ 𝑔 )  =  ( Itv ‘ 𝐺 ) )  | 
						
						
							| 28 | 
							
								27 2
							 | 
							eqtr4di | 
							⊢ ( 𝑔  =  𝐺  →  ( Itv ‘ 𝑔 )  =  𝐼 )  | 
						
						
							| 29 | 
							
								28
							 | 
							oveqd | 
							⊢ ( 𝑔  =  𝐺  →  ( 𝑐 ( Itv ‘ 𝑔 ) 𝑏 )  =  ( 𝑐 𝐼 𝑏 ) )  | 
						
						
							| 30 | 
							
								29
							 | 
							eleq2d | 
							⊢ ( 𝑔  =  𝐺  →  ( 𝑎  ∈  ( 𝑐 ( Itv ‘ 𝑔 ) 𝑏 )  ↔  𝑎  ∈  ( 𝑐 𝐼 𝑏 ) ) )  | 
						
						
							| 31 | 
							
								28
							 | 
							oveqd | 
							⊢ ( 𝑔  =  𝐺  →  ( 𝑐 ( Itv ‘ 𝑔 ) 𝑎 )  =  ( 𝑐 𝐼 𝑎 ) )  | 
						
						
							| 32 | 
							
								31
							 | 
							eleq2d | 
							⊢ ( 𝑔  =  𝐺  →  ( 𝑏  ∈  ( 𝑐 ( Itv ‘ 𝑔 ) 𝑎 )  ↔  𝑏  ∈  ( 𝑐 𝐼 𝑎 ) ) )  | 
						
						
							| 33 | 
							
								30 32
							 | 
							orbi12d | 
							⊢ ( 𝑔  =  𝐺  →  ( ( 𝑎  ∈  ( 𝑐 ( Itv ‘ 𝑔 ) 𝑏 )  ∨  𝑏  ∈  ( 𝑐 ( Itv ‘ 𝑔 ) 𝑎 ) )  ↔  ( 𝑎  ∈  ( 𝑐 𝐼 𝑏 )  ∨  𝑏  ∈  ( 𝑐 𝐼 𝑎 ) ) ) )  | 
						
						
							| 34 | 
							
								33
							 | 
							3anbi3d | 
							⊢ ( 𝑔  =  𝐺  →  ( ( 𝑎  ≠  𝑐  ∧  𝑏  ≠  𝑐  ∧  ( 𝑎  ∈  ( 𝑐 ( Itv ‘ 𝑔 ) 𝑏 )  ∨  𝑏  ∈  ( 𝑐 ( Itv ‘ 𝑔 ) 𝑎 ) ) )  ↔  ( 𝑎  ≠  𝑐  ∧  𝑏  ≠  𝑐  ∧  ( 𝑎  ∈  ( 𝑐 𝐼 𝑏 )  ∨  𝑏  ∈  ( 𝑐 𝐼 𝑎 ) ) ) ) )  | 
						
						
							| 35 | 
							
								26 34
							 | 
							anbi12d | 
							⊢ ( 𝑔  =  𝐺  →  ( ( ( 𝑎  ∈  ( Base ‘ 𝑔 )  ∧  𝑏  ∈  ( Base ‘ 𝑔 ) )  ∧  ( 𝑎  ≠  𝑐  ∧  𝑏  ≠  𝑐  ∧  ( 𝑎  ∈  ( 𝑐 ( Itv ‘ 𝑔 ) 𝑏 )  ∨  𝑏  ∈  ( 𝑐 ( Itv ‘ 𝑔 ) 𝑎 ) ) ) )  ↔  ( ( 𝑎  ∈  𝑃  ∧  𝑏  ∈  𝑃 )  ∧  ( 𝑎  ≠  𝑐  ∧  𝑏  ≠  𝑐  ∧  ( 𝑎  ∈  ( 𝑐 𝐼 𝑏 )  ∨  𝑏  ∈  ( 𝑐 𝐼 𝑎 ) ) ) ) ) )  | 
						
						
							| 36 | 
							
								35
							 | 
							opabbidv | 
							⊢ ( 𝑔  =  𝐺  →  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  ( Base ‘ 𝑔 )  ∧  𝑏  ∈  ( Base ‘ 𝑔 ) )  ∧  ( 𝑎  ≠  𝑐  ∧  𝑏  ≠  𝑐  ∧  ( 𝑎  ∈  ( 𝑐 ( Itv ‘ 𝑔 ) 𝑏 )  ∨  𝑏  ∈  ( 𝑐 ( Itv ‘ 𝑔 ) 𝑎 ) ) ) ) }  =  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  𝑃  ∧  𝑏  ∈  𝑃 )  ∧  ( 𝑎  ≠  𝑐  ∧  𝑏  ≠  𝑐  ∧  ( 𝑎  ∈  ( 𝑐 𝐼 𝑏 )  ∨  𝑏  ∈  ( 𝑐 𝐼 𝑎 ) ) ) ) } )  | 
						
						
							| 37 | 
							
								23 36
							 | 
							mpteq12dv | 
							⊢ ( 𝑔  =  𝐺  →  ( 𝑐  ∈  ( Base ‘ 𝑔 )  ↦  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  ( Base ‘ 𝑔 )  ∧  𝑏  ∈  ( Base ‘ 𝑔 ) )  ∧  ( 𝑎  ≠  𝑐  ∧  𝑏  ≠  𝑐  ∧  ( 𝑎  ∈  ( 𝑐 ( Itv ‘ 𝑔 ) 𝑏 )  ∨  𝑏  ∈  ( 𝑐 ( Itv ‘ 𝑔 ) 𝑎 ) ) ) ) } )  =  ( 𝑐  ∈  𝑃  ↦  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  𝑃  ∧  𝑏  ∈  𝑃 )  ∧  ( 𝑎  ≠  𝑐  ∧  𝑏  ≠  𝑐  ∧  ( 𝑎  ∈  ( 𝑐 𝐼 𝑏 )  ∨  𝑏  ∈  ( 𝑐 𝐼 𝑎 ) ) ) ) } ) )  | 
						
						
							| 38 | 
							
								
							 | 
							df-hlg | 
							⊢ hlG  =  ( 𝑔  ∈  V  ↦  ( 𝑐  ∈  ( Base ‘ 𝑔 )  ↦  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  ( Base ‘ 𝑔 )  ∧  𝑏  ∈  ( Base ‘ 𝑔 ) )  ∧  ( 𝑎  ≠  𝑐  ∧  𝑏  ≠  𝑐  ∧  ( 𝑎  ∈  ( 𝑐 ( Itv ‘ 𝑔 ) 𝑏 )  ∨  𝑏  ∈  ( 𝑐 ( Itv ‘ 𝑔 ) 𝑎 ) ) ) ) } ) )  | 
						
						
							| 39 | 
							
								37 38 1
							 | 
							mptfvmpt | 
							⊢ ( 𝐺  ∈  V  →  ( hlG ‘ 𝐺 )  =  ( 𝑐  ∈  𝑃  ↦  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  𝑃  ∧  𝑏  ∈  𝑃 )  ∧  ( 𝑎  ≠  𝑐  ∧  𝑏  ≠  𝑐  ∧  ( 𝑎  ∈  ( 𝑐 𝐼 𝑏 )  ∨  𝑏  ∈  ( 𝑐 𝐼 𝑎 ) ) ) ) } ) )  | 
						
						
							| 40 | 
							
								7 21 39
							 | 
							3syl | 
							⊢ ( 𝜑  →  ( hlG ‘ 𝐺 )  =  ( 𝑐  ∈  𝑃  ↦  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  𝑃  ∧  𝑏  ∈  𝑃 )  ∧  ( 𝑎  ≠  𝑐  ∧  𝑏  ≠  𝑐  ∧  ( 𝑎  ∈  ( 𝑐 𝐼 𝑏 )  ∨  𝑏  ∈  ( 𝑐 𝐼 𝑎 ) ) ) ) } ) )  | 
						
						
							| 41 | 
							
								3 40
							 | 
							eqtrid | 
							⊢ ( 𝜑  →  𝐾  =  ( 𝑐  ∈  𝑃  ↦  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  𝑃  ∧  𝑏  ∈  𝑃 )  ∧  ( 𝑎  ≠  𝑐  ∧  𝑏  ≠  𝑐  ∧  ( 𝑎  ∈  ( 𝑐 𝐼 𝑏 )  ∨  𝑏  ∈  ( 𝑐 𝐼 𝑎 ) ) ) ) } ) )  | 
						
						
							| 42 | 
							
								
							 | 
							neeq2 | 
							⊢ ( 𝑐  =  𝐶  →  ( 𝑎  ≠  𝑐  ↔  𝑎  ≠  𝐶 ) )  | 
						
						
							| 43 | 
							
								
							 | 
							neeq2 | 
							⊢ ( 𝑐  =  𝐶  →  ( 𝑏  ≠  𝑐  ↔  𝑏  ≠  𝐶 ) )  | 
						
						
							| 44 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑐  =  𝐶  →  ( 𝑐 𝐼 𝑏 )  =  ( 𝐶 𝐼 𝑏 ) )  | 
						
						
							| 45 | 
							
								44
							 | 
							eleq2d | 
							⊢ ( 𝑐  =  𝐶  →  ( 𝑎  ∈  ( 𝑐 𝐼 𝑏 )  ↔  𝑎  ∈  ( 𝐶 𝐼 𝑏 ) ) )  | 
						
						
							| 46 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑐  =  𝐶  →  ( 𝑐 𝐼 𝑎 )  =  ( 𝐶 𝐼 𝑎 ) )  | 
						
						
							| 47 | 
							
								46
							 | 
							eleq2d | 
							⊢ ( 𝑐  =  𝐶  →  ( 𝑏  ∈  ( 𝑐 𝐼 𝑎 )  ↔  𝑏  ∈  ( 𝐶 𝐼 𝑎 ) ) )  | 
						
						
							| 48 | 
							
								45 47
							 | 
							orbi12d | 
							⊢ ( 𝑐  =  𝐶  →  ( ( 𝑎  ∈  ( 𝑐 𝐼 𝑏 )  ∨  𝑏  ∈  ( 𝑐 𝐼 𝑎 ) )  ↔  ( 𝑎  ∈  ( 𝐶 𝐼 𝑏 )  ∨  𝑏  ∈  ( 𝐶 𝐼 𝑎 ) ) ) )  | 
						
						
							| 49 | 
							
								42 43 48
							 | 
							3anbi123d | 
							⊢ ( 𝑐  =  𝐶  →  ( ( 𝑎  ≠  𝑐  ∧  𝑏  ≠  𝑐  ∧  ( 𝑎  ∈  ( 𝑐 𝐼 𝑏 )  ∨  𝑏  ∈  ( 𝑐 𝐼 𝑎 ) ) )  ↔  ( 𝑎  ≠  𝐶  ∧  𝑏  ≠  𝐶  ∧  ( 𝑎  ∈  ( 𝐶 𝐼 𝑏 )  ∨  𝑏  ∈  ( 𝐶 𝐼 𝑎 ) ) ) ) )  | 
						
						
							| 50 | 
							
								49
							 | 
							anbi2d | 
							⊢ ( 𝑐  =  𝐶  →  ( ( ( 𝑎  ∈  𝑃  ∧  𝑏  ∈  𝑃 )  ∧  ( 𝑎  ≠  𝑐  ∧  𝑏  ≠  𝑐  ∧  ( 𝑎  ∈  ( 𝑐 𝐼 𝑏 )  ∨  𝑏  ∈  ( 𝑐 𝐼 𝑎 ) ) ) )  ↔  ( ( 𝑎  ∈  𝑃  ∧  𝑏  ∈  𝑃 )  ∧  ( 𝑎  ≠  𝐶  ∧  𝑏  ≠  𝐶  ∧  ( 𝑎  ∈  ( 𝐶 𝐼 𝑏 )  ∨  𝑏  ∈  ( 𝐶 𝐼 𝑎 ) ) ) ) ) )  | 
						
						
							| 51 | 
							
								50
							 | 
							opabbidv | 
							⊢ ( 𝑐  =  𝐶  →  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  𝑃  ∧  𝑏  ∈  𝑃 )  ∧  ( 𝑎  ≠  𝑐  ∧  𝑏  ≠  𝑐  ∧  ( 𝑎  ∈  ( 𝑐 𝐼 𝑏 )  ∨  𝑏  ∈  ( 𝑐 𝐼 𝑎 ) ) ) ) }  =  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  𝑃  ∧  𝑏  ∈  𝑃 )  ∧  ( 𝑎  ≠  𝐶  ∧  𝑏  ≠  𝐶  ∧  ( 𝑎  ∈  ( 𝐶 𝐼 𝑏 )  ∨  𝑏  ∈  ( 𝐶 𝐼 𝑎 ) ) ) ) } )  | 
						
						
							| 52 | 
							
								51
							 | 
							adantl | 
							⊢ ( ( 𝜑  ∧  𝑐  =  𝐶 )  →  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  𝑃  ∧  𝑏  ∈  𝑃 )  ∧  ( 𝑎  ≠  𝑐  ∧  𝑏  ≠  𝑐  ∧  ( 𝑎  ∈  ( 𝑐 𝐼 𝑏 )  ∨  𝑏  ∈  ( 𝑐 𝐼 𝑎 ) ) ) ) }  =  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  𝑃  ∧  𝑏  ∈  𝑃 )  ∧  ( 𝑎  ≠  𝐶  ∧  𝑏  ≠  𝐶  ∧  ( 𝑎  ∈  ( 𝐶 𝐼 𝑏 )  ∨  𝑏  ∈  ( 𝐶 𝐼 𝑎 ) ) ) ) } )  | 
						
						
							| 53 | 
							
								1
							 | 
							fvexi | 
							⊢ 𝑃  ∈  V  | 
						
						
							| 54 | 
							
								53 53
							 | 
							xpex | 
							⊢ ( 𝑃  ×  𝑃 )  ∈  V  | 
						
						
							| 55 | 
							
								
							 | 
							opabssxp | 
							⊢ { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  𝑃  ∧  𝑏  ∈  𝑃 )  ∧  ( 𝑎  ≠  𝐶  ∧  𝑏  ≠  𝐶  ∧  ( 𝑎  ∈  ( 𝐶 𝐼 𝑏 )  ∨  𝑏  ∈  ( 𝐶 𝐼 𝑎 ) ) ) ) }  ⊆  ( 𝑃  ×  𝑃 )  | 
						
						
							| 56 | 
							
								54 55
							 | 
							ssexi | 
							⊢ { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  𝑃  ∧  𝑏  ∈  𝑃 )  ∧  ( 𝑎  ≠  𝐶  ∧  𝑏  ≠  𝐶  ∧  ( 𝑎  ∈  ( 𝐶 𝐼 𝑏 )  ∨  𝑏  ∈  ( 𝐶 𝐼 𝑎 ) ) ) ) }  ∈  V  | 
						
						
							| 57 | 
							
								56
							 | 
							a1i | 
							⊢ ( 𝜑  →  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  𝑃  ∧  𝑏  ∈  𝑃 )  ∧  ( 𝑎  ≠  𝐶  ∧  𝑏  ≠  𝐶  ∧  ( 𝑎  ∈  ( 𝐶 𝐼 𝑏 )  ∨  𝑏  ∈  ( 𝐶 𝐼 𝑎 ) ) ) ) }  ∈  V )  | 
						
						
							| 58 | 
							
								41 52 6 57
							 | 
							fvmptd | 
							⊢ ( 𝜑  →  ( 𝐾 ‘ 𝐶 )  =  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  𝑃  ∧  𝑏  ∈  𝑃 )  ∧  ( 𝑎  ≠  𝐶  ∧  𝑏  ≠  𝐶  ∧  ( 𝑎  ∈  ( 𝐶 𝐼 𝑏 )  ∨  𝑏  ∈  ( 𝐶 𝐼 𝑎 ) ) ) ) } )  | 
						
						
							| 59 | 
							
								58
							 | 
							breqd | 
							⊢ ( 𝜑  →  ( 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵  ↔  𝐴 { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  𝑃  ∧  𝑏  ∈  𝑃 )  ∧  ( 𝑎  ≠  𝐶  ∧  𝑏  ≠  𝐶  ∧  ( 𝑎  ∈  ( 𝐶 𝐼 𝑏 )  ∨  𝑏  ∈  ( 𝐶 𝐼 𝑎 ) ) ) ) } 𝐵 ) )  | 
						
						
							| 60 | 
							
								4 5
							 | 
							jca | 
							⊢ ( 𝜑  →  ( 𝐴  ∈  𝑃  ∧  𝐵  ∈  𝑃 ) )  | 
						
						
							| 61 | 
							
								60
							 | 
							biantrurd | 
							⊢ ( 𝜑  →  ( ( 𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶  ∧  ( 𝐴  ∈  ( 𝐶 𝐼 𝐵 )  ∨  𝐵  ∈  ( 𝐶 𝐼 𝐴 ) ) )  ↔  ( ( 𝐴  ∈  𝑃  ∧  𝐵  ∈  𝑃 )  ∧  ( 𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶  ∧  ( 𝐴  ∈  ( 𝐶 𝐼 𝐵 )  ∨  𝐵  ∈  ( 𝐶 𝐼 𝐴 ) ) ) ) ) )  | 
						
						
							| 62 | 
							
								20 59 61
							 | 
							3bitr4d | 
							⊢ ( 𝜑  →  ( 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵  ↔  ( 𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶  ∧  ( 𝐴  ∈  ( 𝐶 𝐼 𝐵 )  ∨  𝐵  ∈  ( 𝐶 𝐼 𝐴 ) ) ) ) )  |