Step |
Hyp |
Ref |
Expression |
1 |
|
ishlg.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
ishlg.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
3 |
|
ishlg.k |
⊢ 𝐾 = ( hlG ‘ 𝐺 ) |
4 |
|
ishlg.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
5 |
|
ishlg.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
6 |
|
ishlg.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
7 |
|
ishlg.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝑉 ) |
8 |
|
simpl |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) → 𝑎 = 𝐴 ) |
9 |
8
|
neeq1d |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) → ( 𝑎 ≠ 𝐶 ↔ 𝐴 ≠ 𝐶 ) ) |
10 |
|
simpr |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) → 𝑏 = 𝐵 ) |
11 |
10
|
neeq1d |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) → ( 𝑏 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶 ) ) |
12 |
10
|
oveq2d |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) → ( 𝐶 𝐼 𝑏 ) = ( 𝐶 𝐼 𝐵 ) ) |
13 |
8 12
|
eleq12d |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) → ( 𝑎 ∈ ( 𝐶 𝐼 𝑏 ) ↔ 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ) ) |
14 |
8
|
oveq2d |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) → ( 𝐶 𝐼 𝑎 ) = ( 𝐶 𝐼 𝐴 ) ) |
15 |
10 14
|
eleq12d |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) → ( 𝑏 ∈ ( 𝐶 𝐼 𝑎 ) ↔ 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) ) |
16 |
13 15
|
orbi12d |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) → ( ( 𝑎 ∈ ( 𝐶 𝐼 𝑏 ) ∨ 𝑏 ∈ ( 𝐶 𝐼 𝑎 ) ) ↔ ( 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ∨ 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) ) ) |
17 |
9 11 16
|
3anbi123d |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) → ( ( 𝑎 ≠ 𝐶 ∧ 𝑏 ≠ 𝐶 ∧ ( 𝑎 ∈ ( 𝐶 𝐼 𝑏 ) ∨ 𝑏 ∈ ( 𝐶 𝐼 𝑎 ) ) ) ↔ ( 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ∨ 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) ) ) ) |
18 |
|
eqid |
⊢ { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ∧ ( 𝑎 ≠ 𝐶 ∧ 𝑏 ≠ 𝐶 ∧ ( 𝑎 ∈ ( 𝐶 𝐼 𝑏 ) ∨ 𝑏 ∈ ( 𝐶 𝐼 𝑎 ) ) ) ) } = { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ∧ ( 𝑎 ≠ 𝐶 ∧ 𝑏 ≠ 𝐶 ∧ ( 𝑎 ∈ ( 𝐶 𝐼 𝑏 ) ∨ 𝑏 ∈ ( 𝐶 𝐼 𝑎 ) ) ) ) } |
19 |
17 18
|
brab2a |
⊢ ( 𝐴 { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ∧ ( 𝑎 ≠ 𝐶 ∧ 𝑏 ≠ 𝐶 ∧ ( 𝑎 ∈ ( 𝐶 𝐼 𝑏 ) ∨ 𝑏 ∈ ( 𝐶 𝐼 𝑎 ) ) ) ) } 𝐵 ↔ ( ( 𝐴 ∈ 𝑃 ∧ 𝐵 ∈ 𝑃 ) ∧ ( 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ∨ 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) ) ) ) |
20 |
19
|
a1i |
⊢ ( 𝜑 → ( 𝐴 { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ∧ ( 𝑎 ≠ 𝐶 ∧ 𝑏 ≠ 𝐶 ∧ ( 𝑎 ∈ ( 𝐶 𝐼 𝑏 ) ∨ 𝑏 ∈ ( 𝐶 𝐼 𝑎 ) ) ) ) } 𝐵 ↔ ( ( 𝐴 ∈ 𝑃 ∧ 𝐵 ∈ 𝑃 ) ∧ ( 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ∨ 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) ) ) ) ) |
21 |
|
elex |
⊢ ( 𝐺 ∈ 𝑉 → 𝐺 ∈ V ) |
22 |
|
fveq2 |
⊢ ( 𝑔 = 𝐺 → ( Base ‘ 𝑔 ) = ( Base ‘ 𝐺 ) ) |
23 |
22 1
|
eqtr4di |
⊢ ( 𝑔 = 𝐺 → ( Base ‘ 𝑔 ) = 𝑃 ) |
24 |
23
|
eleq2d |
⊢ ( 𝑔 = 𝐺 → ( 𝑎 ∈ ( Base ‘ 𝑔 ) ↔ 𝑎 ∈ 𝑃 ) ) |
25 |
23
|
eleq2d |
⊢ ( 𝑔 = 𝐺 → ( 𝑏 ∈ ( Base ‘ 𝑔 ) ↔ 𝑏 ∈ 𝑃 ) ) |
26 |
24 25
|
anbi12d |
⊢ ( 𝑔 = 𝐺 → ( ( 𝑎 ∈ ( Base ‘ 𝑔 ) ∧ 𝑏 ∈ ( Base ‘ 𝑔 ) ) ↔ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ) ) |
27 |
|
fveq2 |
⊢ ( 𝑔 = 𝐺 → ( Itv ‘ 𝑔 ) = ( Itv ‘ 𝐺 ) ) |
28 |
27 2
|
eqtr4di |
⊢ ( 𝑔 = 𝐺 → ( Itv ‘ 𝑔 ) = 𝐼 ) |
29 |
28
|
oveqd |
⊢ ( 𝑔 = 𝐺 → ( 𝑐 ( Itv ‘ 𝑔 ) 𝑏 ) = ( 𝑐 𝐼 𝑏 ) ) |
30 |
29
|
eleq2d |
⊢ ( 𝑔 = 𝐺 → ( 𝑎 ∈ ( 𝑐 ( Itv ‘ 𝑔 ) 𝑏 ) ↔ 𝑎 ∈ ( 𝑐 𝐼 𝑏 ) ) ) |
31 |
28
|
oveqd |
⊢ ( 𝑔 = 𝐺 → ( 𝑐 ( Itv ‘ 𝑔 ) 𝑎 ) = ( 𝑐 𝐼 𝑎 ) ) |
32 |
31
|
eleq2d |
⊢ ( 𝑔 = 𝐺 → ( 𝑏 ∈ ( 𝑐 ( Itv ‘ 𝑔 ) 𝑎 ) ↔ 𝑏 ∈ ( 𝑐 𝐼 𝑎 ) ) ) |
33 |
30 32
|
orbi12d |
⊢ ( 𝑔 = 𝐺 → ( ( 𝑎 ∈ ( 𝑐 ( Itv ‘ 𝑔 ) 𝑏 ) ∨ 𝑏 ∈ ( 𝑐 ( Itv ‘ 𝑔 ) 𝑎 ) ) ↔ ( 𝑎 ∈ ( 𝑐 𝐼 𝑏 ) ∨ 𝑏 ∈ ( 𝑐 𝐼 𝑎 ) ) ) ) |
34 |
33
|
3anbi3d |
⊢ ( 𝑔 = 𝐺 → ( ( 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ∧ ( 𝑎 ∈ ( 𝑐 ( Itv ‘ 𝑔 ) 𝑏 ) ∨ 𝑏 ∈ ( 𝑐 ( Itv ‘ 𝑔 ) 𝑎 ) ) ) ↔ ( 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ∧ ( 𝑎 ∈ ( 𝑐 𝐼 𝑏 ) ∨ 𝑏 ∈ ( 𝑐 𝐼 𝑎 ) ) ) ) ) |
35 |
26 34
|
anbi12d |
⊢ ( 𝑔 = 𝐺 → ( ( ( 𝑎 ∈ ( Base ‘ 𝑔 ) ∧ 𝑏 ∈ ( Base ‘ 𝑔 ) ) ∧ ( 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ∧ ( 𝑎 ∈ ( 𝑐 ( Itv ‘ 𝑔 ) 𝑏 ) ∨ 𝑏 ∈ ( 𝑐 ( Itv ‘ 𝑔 ) 𝑎 ) ) ) ) ↔ ( ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ∧ ( 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ∧ ( 𝑎 ∈ ( 𝑐 𝐼 𝑏 ) ∨ 𝑏 ∈ ( 𝑐 𝐼 𝑎 ) ) ) ) ) ) |
36 |
35
|
opabbidv |
⊢ ( 𝑔 = 𝐺 → { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( Base ‘ 𝑔 ) ∧ 𝑏 ∈ ( Base ‘ 𝑔 ) ) ∧ ( 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ∧ ( 𝑎 ∈ ( 𝑐 ( Itv ‘ 𝑔 ) 𝑏 ) ∨ 𝑏 ∈ ( 𝑐 ( Itv ‘ 𝑔 ) 𝑎 ) ) ) ) } = { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ∧ ( 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ∧ ( 𝑎 ∈ ( 𝑐 𝐼 𝑏 ) ∨ 𝑏 ∈ ( 𝑐 𝐼 𝑎 ) ) ) ) } ) |
37 |
23 36
|
mpteq12dv |
⊢ ( 𝑔 = 𝐺 → ( 𝑐 ∈ ( Base ‘ 𝑔 ) ↦ { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( Base ‘ 𝑔 ) ∧ 𝑏 ∈ ( Base ‘ 𝑔 ) ) ∧ ( 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ∧ ( 𝑎 ∈ ( 𝑐 ( Itv ‘ 𝑔 ) 𝑏 ) ∨ 𝑏 ∈ ( 𝑐 ( Itv ‘ 𝑔 ) 𝑎 ) ) ) ) } ) = ( 𝑐 ∈ 𝑃 ↦ { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ∧ ( 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ∧ ( 𝑎 ∈ ( 𝑐 𝐼 𝑏 ) ∨ 𝑏 ∈ ( 𝑐 𝐼 𝑎 ) ) ) ) } ) ) |
38 |
|
df-hlg |
⊢ hlG = ( 𝑔 ∈ V ↦ ( 𝑐 ∈ ( Base ‘ 𝑔 ) ↦ { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( Base ‘ 𝑔 ) ∧ 𝑏 ∈ ( Base ‘ 𝑔 ) ) ∧ ( 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ∧ ( 𝑎 ∈ ( 𝑐 ( Itv ‘ 𝑔 ) 𝑏 ) ∨ 𝑏 ∈ ( 𝑐 ( Itv ‘ 𝑔 ) 𝑎 ) ) ) ) } ) ) |
39 |
37 38 1
|
mptfvmpt |
⊢ ( 𝐺 ∈ V → ( hlG ‘ 𝐺 ) = ( 𝑐 ∈ 𝑃 ↦ { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ∧ ( 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ∧ ( 𝑎 ∈ ( 𝑐 𝐼 𝑏 ) ∨ 𝑏 ∈ ( 𝑐 𝐼 𝑎 ) ) ) ) } ) ) |
40 |
7 21 39
|
3syl |
⊢ ( 𝜑 → ( hlG ‘ 𝐺 ) = ( 𝑐 ∈ 𝑃 ↦ { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ∧ ( 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ∧ ( 𝑎 ∈ ( 𝑐 𝐼 𝑏 ) ∨ 𝑏 ∈ ( 𝑐 𝐼 𝑎 ) ) ) ) } ) ) |
41 |
3 40
|
syl5eq |
⊢ ( 𝜑 → 𝐾 = ( 𝑐 ∈ 𝑃 ↦ { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ∧ ( 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ∧ ( 𝑎 ∈ ( 𝑐 𝐼 𝑏 ) ∨ 𝑏 ∈ ( 𝑐 𝐼 𝑎 ) ) ) ) } ) ) |
42 |
|
neeq2 |
⊢ ( 𝑐 = 𝐶 → ( 𝑎 ≠ 𝑐 ↔ 𝑎 ≠ 𝐶 ) ) |
43 |
|
neeq2 |
⊢ ( 𝑐 = 𝐶 → ( 𝑏 ≠ 𝑐 ↔ 𝑏 ≠ 𝐶 ) ) |
44 |
|
oveq1 |
⊢ ( 𝑐 = 𝐶 → ( 𝑐 𝐼 𝑏 ) = ( 𝐶 𝐼 𝑏 ) ) |
45 |
44
|
eleq2d |
⊢ ( 𝑐 = 𝐶 → ( 𝑎 ∈ ( 𝑐 𝐼 𝑏 ) ↔ 𝑎 ∈ ( 𝐶 𝐼 𝑏 ) ) ) |
46 |
|
oveq1 |
⊢ ( 𝑐 = 𝐶 → ( 𝑐 𝐼 𝑎 ) = ( 𝐶 𝐼 𝑎 ) ) |
47 |
46
|
eleq2d |
⊢ ( 𝑐 = 𝐶 → ( 𝑏 ∈ ( 𝑐 𝐼 𝑎 ) ↔ 𝑏 ∈ ( 𝐶 𝐼 𝑎 ) ) ) |
48 |
45 47
|
orbi12d |
⊢ ( 𝑐 = 𝐶 → ( ( 𝑎 ∈ ( 𝑐 𝐼 𝑏 ) ∨ 𝑏 ∈ ( 𝑐 𝐼 𝑎 ) ) ↔ ( 𝑎 ∈ ( 𝐶 𝐼 𝑏 ) ∨ 𝑏 ∈ ( 𝐶 𝐼 𝑎 ) ) ) ) |
49 |
42 43 48
|
3anbi123d |
⊢ ( 𝑐 = 𝐶 → ( ( 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ∧ ( 𝑎 ∈ ( 𝑐 𝐼 𝑏 ) ∨ 𝑏 ∈ ( 𝑐 𝐼 𝑎 ) ) ) ↔ ( 𝑎 ≠ 𝐶 ∧ 𝑏 ≠ 𝐶 ∧ ( 𝑎 ∈ ( 𝐶 𝐼 𝑏 ) ∨ 𝑏 ∈ ( 𝐶 𝐼 𝑎 ) ) ) ) ) |
50 |
49
|
anbi2d |
⊢ ( 𝑐 = 𝐶 → ( ( ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ∧ ( 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ∧ ( 𝑎 ∈ ( 𝑐 𝐼 𝑏 ) ∨ 𝑏 ∈ ( 𝑐 𝐼 𝑎 ) ) ) ) ↔ ( ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ∧ ( 𝑎 ≠ 𝐶 ∧ 𝑏 ≠ 𝐶 ∧ ( 𝑎 ∈ ( 𝐶 𝐼 𝑏 ) ∨ 𝑏 ∈ ( 𝐶 𝐼 𝑎 ) ) ) ) ) ) |
51 |
50
|
opabbidv |
⊢ ( 𝑐 = 𝐶 → { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ∧ ( 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ∧ ( 𝑎 ∈ ( 𝑐 𝐼 𝑏 ) ∨ 𝑏 ∈ ( 𝑐 𝐼 𝑎 ) ) ) ) } = { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ∧ ( 𝑎 ≠ 𝐶 ∧ 𝑏 ≠ 𝐶 ∧ ( 𝑎 ∈ ( 𝐶 𝐼 𝑏 ) ∨ 𝑏 ∈ ( 𝐶 𝐼 𝑎 ) ) ) ) } ) |
52 |
51
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑐 = 𝐶 ) → { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ∧ ( 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ∧ ( 𝑎 ∈ ( 𝑐 𝐼 𝑏 ) ∨ 𝑏 ∈ ( 𝑐 𝐼 𝑎 ) ) ) ) } = { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ∧ ( 𝑎 ≠ 𝐶 ∧ 𝑏 ≠ 𝐶 ∧ ( 𝑎 ∈ ( 𝐶 𝐼 𝑏 ) ∨ 𝑏 ∈ ( 𝐶 𝐼 𝑎 ) ) ) ) } ) |
53 |
1
|
fvexi |
⊢ 𝑃 ∈ V |
54 |
53 53
|
xpex |
⊢ ( 𝑃 × 𝑃 ) ∈ V |
55 |
|
opabssxp |
⊢ { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ∧ ( 𝑎 ≠ 𝐶 ∧ 𝑏 ≠ 𝐶 ∧ ( 𝑎 ∈ ( 𝐶 𝐼 𝑏 ) ∨ 𝑏 ∈ ( 𝐶 𝐼 𝑎 ) ) ) ) } ⊆ ( 𝑃 × 𝑃 ) |
56 |
54 55
|
ssexi |
⊢ { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ∧ ( 𝑎 ≠ 𝐶 ∧ 𝑏 ≠ 𝐶 ∧ ( 𝑎 ∈ ( 𝐶 𝐼 𝑏 ) ∨ 𝑏 ∈ ( 𝐶 𝐼 𝑎 ) ) ) ) } ∈ V |
57 |
56
|
a1i |
⊢ ( 𝜑 → { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ∧ ( 𝑎 ≠ 𝐶 ∧ 𝑏 ≠ 𝐶 ∧ ( 𝑎 ∈ ( 𝐶 𝐼 𝑏 ) ∨ 𝑏 ∈ ( 𝐶 𝐼 𝑎 ) ) ) ) } ∈ V ) |
58 |
41 52 6 57
|
fvmptd |
⊢ ( 𝜑 → ( 𝐾 ‘ 𝐶 ) = { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ∧ ( 𝑎 ≠ 𝐶 ∧ 𝑏 ≠ 𝐶 ∧ ( 𝑎 ∈ ( 𝐶 𝐼 𝑏 ) ∨ 𝑏 ∈ ( 𝐶 𝐼 𝑎 ) ) ) ) } ) |
59 |
58
|
breqd |
⊢ ( 𝜑 → ( 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 ↔ 𝐴 { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ∧ ( 𝑎 ≠ 𝐶 ∧ 𝑏 ≠ 𝐶 ∧ ( 𝑎 ∈ ( 𝐶 𝐼 𝑏 ) ∨ 𝑏 ∈ ( 𝐶 𝐼 𝑎 ) ) ) ) } 𝐵 ) ) |
60 |
4 5
|
jca |
⊢ ( 𝜑 → ( 𝐴 ∈ 𝑃 ∧ 𝐵 ∈ 𝑃 ) ) |
61 |
60
|
biantrurd |
⊢ ( 𝜑 → ( ( 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ∨ 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) ) ↔ ( ( 𝐴 ∈ 𝑃 ∧ 𝐵 ∈ 𝑃 ) ∧ ( 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ∨ 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) ) ) ) ) |
62 |
20 59 61
|
3bitr4d |
⊢ ( 𝜑 → ( 𝐴 ( 𝐾 ‘ 𝐶 ) 𝐵 ↔ ( 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ∨ 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) ) ) ) |