Metamath Proof Explorer


Theorem ishmeo

Description: The predicate F is a homeomorphism between topology J and topology K . Criterion of BourbakiTop1 p. I.2. (Contributed by FL, 14-Feb-2007) (Revised by Mario Carneiro, 22-Aug-2015)

Ref Expression
Assertion ishmeo ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ↔ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐹 ∈ ( 𝐾 Cn 𝐽 ) ) )

Proof

Step Hyp Ref Expression
1 cnveq ( 𝑓 = 𝐹 𝑓 = 𝐹 )
2 1 eleq1d ( 𝑓 = 𝐹 → ( 𝑓 ∈ ( 𝐾 Cn 𝐽 ) ↔ 𝐹 ∈ ( 𝐾 Cn 𝐽 ) ) )
3 hmeofval ( 𝐽 Homeo 𝐾 ) = { 𝑓 ∈ ( 𝐽 Cn 𝐾 ) ∣ 𝑓 ∈ ( 𝐾 Cn 𝐽 ) }
4 2 3 elrab2 ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ↔ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐹 ∈ ( 𝐾 Cn 𝐽 ) ) )