Step |
Hyp |
Ref |
Expression |
1 |
|
ishpg.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
ishpg.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
3 |
|
ishpg.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
4 |
|
ishpg.o |
⊢ 𝑂 = { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑏 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑏 ) ) } |
5 |
|
ishpg.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
6 |
|
ishpg.d |
⊢ ( 𝜑 → 𝐷 ∈ ran 𝐿 ) |
7 |
|
elex |
⊢ ( 𝐺 ∈ TarskiG → 𝐺 ∈ V ) |
8 |
|
fveq2 |
⊢ ( 𝑔 = 𝐺 → ( LineG ‘ 𝑔 ) = ( LineG ‘ 𝐺 ) ) |
9 |
8 3
|
eqtr4di |
⊢ ( 𝑔 = 𝐺 → ( LineG ‘ 𝑔 ) = 𝐿 ) |
10 |
9
|
rneqd |
⊢ ( 𝑔 = 𝐺 → ran ( LineG ‘ 𝑔 ) = ran 𝐿 ) |
11 |
|
simpl |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) → 𝑝 = 𝑃 ) |
12 |
11
|
difeq1d |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) → ( 𝑝 ∖ 𝑑 ) = ( 𝑃 ∖ 𝑑 ) ) |
13 |
12
|
eleq2d |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) → ( 𝑎 ∈ ( 𝑝 ∖ 𝑑 ) ↔ 𝑎 ∈ ( 𝑃 ∖ 𝑑 ) ) ) |
14 |
12
|
eleq2d |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) → ( 𝑐 ∈ ( 𝑝 ∖ 𝑑 ) ↔ 𝑐 ∈ ( 𝑃 ∖ 𝑑 ) ) ) |
15 |
13 14
|
anbi12d |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) → ( ( 𝑎 ∈ ( 𝑝 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑝 ∖ 𝑑 ) ) ↔ ( 𝑎 ∈ ( 𝑃 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝑑 ) ) ) ) |
16 |
|
simpr |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) → 𝑖 = 𝐼 ) |
17 |
16
|
oveqd |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) → ( 𝑎 𝑖 𝑐 ) = ( 𝑎 𝐼 𝑐 ) ) |
18 |
17
|
eleq2d |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) → ( 𝑡 ∈ ( 𝑎 𝑖 𝑐 ) ↔ 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) ) |
19 |
18
|
rexbidv |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) → ( ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑎 𝑖 𝑐 ) ↔ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) ) |
20 |
15 19
|
anbi12d |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) → ( ( ( 𝑎 ∈ ( 𝑝 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑝 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑎 𝑖 𝑐 ) ) ↔ ( ( 𝑎 ∈ ( 𝑃 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) ) ) |
21 |
12
|
eleq2d |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) → ( 𝑏 ∈ ( 𝑝 ∖ 𝑑 ) ↔ 𝑏 ∈ ( 𝑃 ∖ 𝑑 ) ) ) |
22 |
21 14
|
anbi12d |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) → ( ( 𝑏 ∈ ( 𝑝 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑝 ∖ 𝑑 ) ) ↔ ( 𝑏 ∈ ( 𝑃 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝑑 ) ) ) ) |
23 |
16
|
oveqd |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) → ( 𝑏 𝑖 𝑐 ) = ( 𝑏 𝐼 𝑐 ) ) |
24 |
23
|
eleq2d |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) → ( 𝑡 ∈ ( 𝑏 𝑖 𝑐 ) ↔ 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) ) |
25 |
24
|
rexbidv |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) → ( ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑏 𝑖 𝑐 ) ↔ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) ) |
26 |
22 25
|
anbi12d |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) → ( ( ( 𝑏 ∈ ( 𝑝 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑝 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑏 𝑖 𝑐 ) ) ↔ ( ( 𝑏 ∈ ( 𝑃 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) ) ) |
27 |
20 26
|
anbi12d |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) → ( ( ( ( 𝑎 ∈ ( 𝑝 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑝 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑎 𝑖 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑝 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑝 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑏 𝑖 𝑐 ) ) ) ↔ ( ( ( 𝑎 ∈ ( 𝑃 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑃 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) ) ) ) |
28 |
11 27
|
rexeqbidv |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) → ( ∃ 𝑐 ∈ 𝑝 ( ( ( 𝑎 ∈ ( 𝑝 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑝 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑎 𝑖 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑝 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑝 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑏 𝑖 𝑐 ) ) ) ↔ ∃ 𝑐 ∈ 𝑃 ( ( ( 𝑎 ∈ ( 𝑃 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑃 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) ) ) ) |
29 |
1 2 28
|
sbcie2s |
⊢ ( 𝑔 = 𝐺 → ( [ ( Base ‘ 𝑔 ) / 𝑝 ] [ ( Itv ‘ 𝑔 ) / 𝑖 ] ∃ 𝑐 ∈ 𝑝 ( ( ( 𝑎 ∈ ( 𝑝 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑝 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑎 𝑖 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑝 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑝 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑏 𝑖 𝑐 ) ) ) ↔ ∃ 𝑐 ∈ 𝑃 ( ( ( 𝑎 ∈ ( 𝑃 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑃 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) ) ) ) |
30 |
29
|
opabbidv |
⊢ ( 𝑔 = 𝐺 → { 〈 𝑎 , 𝑏 〉 ∣ [ ( Base ‘ 𝑔 ) / 𝑝 ] [ ( Itv ‘ 𝑔 ) / 𝑖 ] ∃ 𝑐 ∈ 𝑝 ( ( ( 𝑎 ∈ ( 𝑝 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑝 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑎 𝑖 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑝 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑝 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑏 𝑖 𝑐 ) ) ) } = { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ 𝑃 ( ( ( 𝑎 ∈ ( 𝑃 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑃 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) ) } ) |
31 |
10 30
|
mpteq12dv |
⊢ ( 𝑔 = 𝐺 → ( 𝑑 ∈ ran ( LineG ‘ 𝑔 ) ↦ { 〈 𝑎 , 𝑏 〉 ∣ [ ( Base ‘ 𝑔 ) / 𝑝 ] [ ( Itv ‘ 𝑔 ) / 𝑖 ] ∃ 𝑐 ∈ 𝑝 ( ( ( 𝑎 ∈ ( 𝑝 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑝 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑎 𝑖 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑝 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑝 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑏 𝑖 𝑐 ) ) ) } ) = ( 𝑑 ∈ ran 𝐿 ↦ { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ 𝑃 ( ( ( 𝑎 ∈ ( 𝑃 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑃 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) ) } ) ) |
32 |
|
df-hpg |
⊢ hpG = ( 𝑔 ∈ V ↦ ( 𝑑 ∈ ran ( LineG ‘ 𝑔 ) ↦ { 〈 𝑎 , 𝑏 〉 ∣ [ ( Base ‘ 𝑔 ) / 𝑝 ] [ ( Itv ‘ 𝑔 ) / 𝑖 ] ∃ 𝑐 ∈ 𝑝 ( ( ( 𝑎 ∈ ( 𝑝 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑝 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑎 𝑖 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑝 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑝 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑏 𝑖 𝑐 ) ) ) } ) ) |
33 |
3
|
fvexi |
⊢ 𝐿 ∈ V |
34 |
33
|
rnex |
⊢ ran 𝐿 ∈ V |
35 |
34
|
mptex |
⊢ ( 𝑑 ∈ ran 𝐿 ↦ { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ 𝑃 ( ( ( 𝑎 ∈ ( 𝑃 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑃 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) ) } ) ∈ V |
36 |
31 32 35
|
fvmpt |
⊢ ( 𝐺 ∈ V → ( hpG ‘ 𝐺 ) = ( 𝑑 ∈ ran 𝐿 ↦ { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ 𝑃 ( ( ( 𝑎 ∈ ( 𝑃 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑃 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) ) } ) ) |
37 |
5 7 36
|
3syl |
⊢ ( 𝜑 → ( hpG ‘ 𝐺 ) = ( 𝑑 ∈ ran 𝐿 ↦ { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ 𝑃 ( ( ( 𝑎 ∈ ( 𝑃 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑃 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) ) } ) ) |
38 |
|
difeq2 |
⊢ ( 𝑑 = 𝐷 → ( 𝑃 ∖ 𝑑 ) = ( 𝑃 ∖ 𝐷 ) ) |
39 |
38
|
eleq2d |
⊢ ( 𝑑 = 𝐷 → ( 𝑎 ∈ ( 𝑃 ∖ 𝑑 ) ↔ 𝑎 ∈ ( 𝑃 ∖ 𝐷 ) ) ) |
40 |
38
|
eleq2d |
⊢ ( 𝑑 = 𝐷 → ( 𝑐 ∈ ( 𝑃 ∖ 𝑑 ) ↔ 𝑐 ∈ ( 𝑃 ∖ 𝐷 ) ) ) |
41 |
39 40
|
anbi12d |
⊢ ( 𝑑 = 𝐷 → ( ( 𝑎 ∈ ( 𝑃 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝑑 ) ) ↔ ( 𝑎 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝐷 ) ) ) ) |
42 |
|
rexeq |
⊢ ( 𝑑 = 𝐷 → ( ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ↔ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) ) |
43 |
41 42
|
anbi12d |
⊢ ( 𝑑 = 𝐷 → ( ( ( 𝑎 ∈ ( 𝑃 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) ↔ ( ( 𝑎 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) ) ) |
44 |
38
|
eleq2d |
⊢ ( 𝑑 = 𝐷 → ( 𝑏 ∈ ( 𝑃 ∖ 𝑑 ) ↔ 𝑏 ∈ ( 𝑃 ∖ 𝐷 ) ) ) |
45 |
44 40
|
anbi12d |
⊢ ( 𝑑 = 𝐷 → ( ( 𝑏 ∈ ( 𝑃 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝑑 ) ) ↔ ( 𝑏 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝐷 ) ) ) ) |
46 |
|
rexeq |
⊢ ( 𝑑 = 𝐷 → ( ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ↔ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) ) |
47 |
45 46
|
anbi12d |
⊢ ( 𝑑 = 𝐷 → ( ( ( 𝑏 ∈ ( 𝑃 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) ↔ ( ( 𝑏 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) ) ) |
48 |
43 47
|
anbi12d |
⊢ ( 𝑑 = 𝐷 → ( ( ( ( 𝑎 ∈ ( 𝑃 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑃 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) ) ↔ ( ( ( 𝑎 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) ) ) ) |
49 |
48
|
rexbidv |
⊢ ( 𝑑 = 𝐷 → ( ∃ 𝑐 ∈ 𝑃 ( ( ( 𝑎 ∈ ( 𝑃 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑃 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) ) ↔ ∃ 𝑐 ∈ 𝑃 ( ( ( 𝑎 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) ) ) ) |
50 |
49
|
opabbidv |
⊢ ( 𝑑 = 𝐷 → { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ 𝑃 ( ( ( 𝑎 ∈ ( 𝑃 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑃 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) ) } = { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ 𝑃 ( ( ( 𝑎 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) ) } ) |
51 |
50
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑑 = 𝐷 ) → { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ 𝑃 ( ( ( 𝑎 ∈ ( 𝑃 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑃 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) ) } = { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ 𝑃 ( ( ( 𝑎 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) ) } ) |
52 |
|
df-xp |
⊢ ( 𝑃 × 𝑃 ) = { 〈 𝑎 , 𝑏 〉 ∣ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) } |
53 |
1
|
fvexi |
⊢ 𝑃 ∈ V |
54 |
53 53
|
xpex |
⊢ ( 𝑃 × 𝑃 ) ∈ V |
55 |
52 54
|
eqeltrri |
⊢ { 〈 𝑎 , 𝑏 〉 ∣ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) } ∈ V |
56 |
|
eldifi |
⊢ ( 𝑎 ∈ ( 𝑃 ∖ 𝐷 ) → 𝑎 ∈ 𝑃 ) |
57 |
|
eldifi |
⊢ ( 𝑏 ∈ ( 𝑃 ∖ 𝐷 ) → 𝑏 ∈ 𝑃 ) |
58 |
56 57
|
anim12i |
⊢ ( ( 𝑎 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑏 ∈ ( 𝑃 ∖ 𝐷 ) ) → ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ) |
59 |
58
|
ad2ant2r |
⊢ ( ( ( 𝑎 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ( 𝑏 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝐷 ) ) ) → ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ) |
60 |
59
|
ad2ant2r |
⊢ ( ( ( ( 𝑎 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) ) → ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ) |
61 |
60
|
rexlimivw |
⊢ ( ∃ 𝑐 ∈ 𝑃 ( ( ( 𝑎 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) ) → ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ) |
62 |
61
|
ssopab2i |
⊢ { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ 𝑃 ( ( ( 𝑎 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) ) } ⊆ { 〈 𝑎 , 𝑏 〉 ∣ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) } |
63 |
55 62
|
ssexi |
⊢ { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ 𝑃 ( ( ( 𝑎 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) ) } ∈ V |
64 |
63
|
a1i |
⊢ ( 𝜑 → { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ 𝑃 ( ( ( 𝑎 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) ) } ∈ V ) |
65 |
37 51 6 64
|
fvmptd |
⊢ ( 𝜑 → ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) = { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ 𝑃 ( ( ( 𝑎 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) ) } ) |
66 |
|
vex |
⊢ 𝑎 ∈ V |
67 |
|
vex |
⊢ 𝑐 ∈ V |
68 |
|
eleq1w |
⊢ ( 𝑒 = 𝑎 → ( 𝑒 ∈ ( 𝑃 ∖ 𝐷 ) ↔ 𝑎 ∈ ( 𝑃 ∖ 𝐷 ) ) ) |
69 |
68
|
anbi1d |
⊢ ( 𝑒 = 𝑎 → ( ( 𝑒 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑓 ∈ ( 𝑃 ∖ 𝐷 ) ) ↔ ( 𝑎 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑓 ∈ ( 𝑃 ∖ 𝐷 ) ) ) ) |
70 |
|
oveq1 |
⊢ ( 𝑒 = 𝑎 → ( 𝑒 𝐼 𝑓 ) = ( 𝑎 𝐼 𝑓 ) ) |
71 |
70
|
eleq2d |
⊢ ( 𝑒 = 𝑎 → ( 𝑡 ∈ ( 𝑒 𝐼 𝑓 ) ↔ 𝑡 ∈ ( 𝑎 𝐼 𝑓 ) ) ) |
72 |
71
|
rexbidv |
⊢ ( 𝑒 = 𝑎 → ( ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑒 𝐼 𝑓 ) ↔ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑓 ) ) ) |
73 |
69 72
|
anbi12d |
⊢ ( 𝑒 = 𝑎 → ( ( ( 𝑒 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑓 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑒 𝐼 𝑓 ) ) ↔ ( ( 𝑎 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑓 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑓 ) ) ) ) |
74 |
|
eleq1w |
⊢ ( 𝑓 = 𝑐 → ( 𝑓 ∈ ( 𝑃 ∖ 𝐷 ) ↔ 𝑐 ∈ ( 𝑃 ∖ 𝐷 ) ) ) |
75 |
74
|
anbi2d |
⊢ ( 𝑓 = 𝑐 → ( ( 𝑎 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑓 ∈ ( 𝑃 ∖ 𝐷 ) ) ↔ ( 𝑎 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝐷 ) ) ) ) |
76 |
|
oveq2 |
⊢ ( 𝑓 = 𝑐 → ( 𝑎 𝐼 𝑓 ) = ( 𝑎 𝐼 𝑐 ) ) |
77 |
76
|
eleq2d |
⊢ ( 𝑓 = 𝑐 → ( 𝑡 ∈ ( 𝑎 𝐼 𝑓 ) ↔ 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) ) |
78 |
77
|
rexbidv |
⊢ ( 𝑓 = 𝑐 → ( ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑓 ) ↔ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) ) |
79 |
75 78
|
anbi12d |
⊢ ( 𝑓 = 𝑐 → ( ( ( 𝑎 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑓 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑓 ) ) ↔ ( ( 𝑎 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) ) ) |
80 |
|
simpl |
⊢ ( ( 𝑎 = 𝑒 ∧ 𝑏 = 𝑓 ) → 𝑎 = 𝑒 ) |
81 |
80
|
eleq1d |
⊢ ( ( 𝑎 = 𝑒 ∧ 𝑏 = 𝑓 ) → ( 𝑎 ∈ ( 𝑃 ∖ 𝐷 ) ↔ 𝑒 ∈ ( 𝑃 ∖ 𝐷 ) ) ) |
82 |
|
simpr |
⊢ ( ( 𝑎 = 𝑒 ∧ 𝑏 = 𝑓 ) → 𝑏 = 𝑓 ) |
83 |
82
|
eleq1d |
⊢ ( ( 𝑎 = 𝑒 ∧ 𝑏 = 𝑓 ) → ( 𝑏 ∈ ( 𝑃 ∖ 𝐷 ) ↔ 𝑓 ∈ ( 𝑃 ∖ 𝐷 ) ) ) |
84 |
81 83
|
anbi12d |
⊢ ( ( 𝑎 = 𝑒 ∧ 𝑏 = 𝑓 ) → ( ( 𝑎 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑏 ∈ ( 𝑃 ∖ 𝐷 ) ) ↔ ( 𝑒 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑓 ∈ ( 𝑃 ∖ 𝐷 ) ) ) ) |
85 |
|
oveq12 |
⊢ ( ( 𝑎 = 𝑒 ∧ 𝑏 = 𝑓 ) → ( 𝑎 𝐼 𝑏 ) = ( 𝑒 𝐼 𝑓 ) ) |
86 |
85
|
eleq2d |
⊢ ( ( 𝑎 = 𝑒 ∧ 𝑏 = 𝑓 ) → ( 𝑡 ∈ ( 𝑎 𝐼 𝑏 ) ↔ 𝑡 ∈ ( 𝑒 𝐼 𝑓 ) ) ) |
87 |
86
|
rexbidv |
⊢ ( ( 𝑎 = 𝑒 ∧ 𝑏 = 𝑓 ) → ( ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑏 ) ↔ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑒 𝐼 𝑓 ) ) ) |
88 |
84 87
|
anbi12d |
⊢ ( ( 𝑎 = 𝑒 ∧ 𝑏 = 𝑓 ) → ( ( ( 𝑎 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑏 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑏 ) ) ↔ ( ( 𝑒 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑓 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑒 𝐼 𝑓 ) ) ) ) |
89 |
88
|
cbvopabv |
⊢ { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑏 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑏 ) ) } = { 〈 𝑒 , 𝑓 〉 ∣ ( ( 𝑒 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑓 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑒 𝐼 𝑓 ) ) } |
90 |
4 89
|
eqtri |
⊢ 𝑂 = { 〈 𝑒 , 𝑓 〉 ∣ ( ( 𝑒 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑓 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑒 𝐼 𝑓 ) ) } |
91 |
66 67 73 79 90
|
brab |
⊢ ( 𝑎 𝑂 𝑐 ↔ ( ( 𝑎 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) ) |
92 |
|
vex |
⊢ 𝑏 ∈ V |
93 |
|
eleq1w |
⊢ ( 𝑒 = 𝑏 → ( 𝑒 ∈ ( 𝑃 ∖ 𝐷 ) ↔ 𝑏 ∈ ( 𝑃 ∖ 𝐷 ) ) ) |
94 |
93
|
anbi1d |
⊢ ( 𝑒 = 𝑏 → ( ( 𝑒 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑓 ∈ ( 𝑃 ∖ 𝐷 ) ) ↔ ( 𝑏 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑓 ∈ ( 𝑃 ∖ 𝐷 ) ) ) ) |
95 |
|
oveq1 |
⊢ ( 𝑒 = 𝑏 → ( 𝑒 𝐼 𝑓 ) = ( 𝑏 𝐼 𝑓 ) ) |
96 |
95
|
eleq2d |
⊢ ( 𝑒 = 𝑏 → ( 𝑡 ∈ ( 𝑒 𝐼 𝑓 ) ↔ 𝑡 ∈ ( 𝑏 𝐼 𝑓 ) ) ) |
97 |
96
|
rexbidv |
⊢ ( 𝑒 = 𝑏 → ( ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑒 𝐼 𝑓 ) ↔ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑏 𝐼 𝑓 ) ) ) |
98 |
94 97
|
anbi12d |
⊢ ( 𝑒 = 𝑏 → ( ( ( 𝑒 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑓 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑒 𝐼 𝑓 ) ) ↔ ( ( 𝑏 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑓 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑏 𝐼 𝑓 ) ) ) ) |
99 |
74
|
anbi2d |
⊢ ( 𝑓 = 𝑐 → ( ( 𝑏 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑓 ∈ ( 𝑃 ∖ 𝐷 ) ) ↔ ( 𝑏 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝐷 ) ) ) ) |
100 |
|
oveq2 |
⊢ ( 𝑓 = 𝑐 → ( 𝑏 𝐼 𝑓 ) = ( 𝑏 𝐼 𝑐 ) ) |
101 |
100
|
eleq2d |
⊢ ( 𝑓 = 𝑐 → ( 𝑡 ∈ ( 𝑏 𝐼 𝑓 ) ↔ 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) ) |
102 |
101
|
rexbidv |
⊢ ( 𝑓 = 𝑐 → ( ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑏 𝐼 𝑓 ) ↔ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) ) |
103 |
99 102
|
anbi12d |
⊢ ( 𝑓 = 𝑐 → ( ( ( 𝑏 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑓 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑏 𝐼 𝑓 ) ) ↔ ( ( 𝑏 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) ) ) |
104 |
92 67 98 103 90
|
brab |
⊢ ( 𝑏 𝑂 𝑐 ↔ ( ( 𝑏 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) ) |
105 |
91 104
|
anbi12i |
⊢ ( ( 𝑎 𝑂 𝑐 ∧ 𝑏 𝑂 𝑐 ) ↔ ( ( ( 𝑎 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) ) ) |
106 |
105
|
rexbii |
⊢ ( ∃ 𝑐 ∈ 𝑃 ( 𝑎 𝑂 𝑐 ∧ 𝑏 𝑂 𝑐 ) ↔ ∃ 𝑐 ∈ 𝑃 ( ( ( 𝑎 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) ) ) |
107 |
106
|
opabbii |
⊢ { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ 𝑃 ( 𝑎 𝑂 𝑐 ∧ 𝑏 𝑂 𝑐 ) } = { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ 𝑃 ( ( ( 𝑎 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) ) } |
108 |
65 107
|
eqtr4di |
⊢ ( 𝜑 → ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) = { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ 𝑃 ( 𝑎 𝑂 𝑐 ∧ 𝑏 𝑂 𝑐 ) } ) |