| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ishpg.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
| 2 |
|
ishpg.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
| 3 |
|
ishpg.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
| 4 |
|
ishpg.o |
⊢ 𝑂 = { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑏 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑏 ) ) } |
| 5 |
|
ishpg.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
| 6 |
|
ishpg.d |
⊢ ( 𝜑 → 𝐷 ∈ ran 𝐿 ) |
| 7 |
|
elex |
⊢ ( 𝐺 ∈ TarskiG → 𝐺 ∈ V ) |
| 8 |
|
fveq2 |
⊢ ( 𝑔 = 𝐺 → ( LineG ‘ 𝑔 ) = ( LineG ‘ 𝐺 ) ) |
| 9 |
8 3
|
eqtr4di |
⊢ ( 𝑔 = 𝐺 → ( LineG ‘ 𝑔 ) = 𝐿 ) |
| 10 |
9
|
rneqd |
⊢ ( 𝑔 = 𝐺 → ran ( LineG ‘ 𝑔 ) = ran 𝐿 ) |
| 11 |
|
simpl |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) → 𝑝 = 𝑃 ) |
| 12 |
11
|
difeq1d |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) → ( 𝑝 ∖ 𝑑 ) = ( 𝑃 ∖ 𝑑 ) ) |
| 13 |
12
|
eleq2d |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) → ( 𝑎 ∈ ( 𝑝 ∖ 𝑑 ) ↔ 𝑎 ∈ ( 𝑃 ∖ 𝑑 ) ) ) |
| 14 |
12
|
eleq2d |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) → ( 𝑐 ∈ ( 𝑝 ∖ 𝑑 ) ↔ 𝑐 ∈ ( 𝑃 ∖ 𝑑 ) ) ) |
| 15 |
13 14
|
anbi12d |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) → ( ( 𝑎 ∈ ( 𝑝 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑝 ∖ 𝑑 ) ) ↔ ( 𝑎 ∈ ( 𝑃 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝑑 ) ) ) ) |
| 16 |
|
simpr |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) → 𝑖 = 𝐼 ) |
| 17 |
16
|
oveqd |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) → ( 𝑎 𝑖 𝑐 ) = ( 𝑎 𝐼 𝑐 ) ) |
| 18 |
17
|
eleq2d |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) → ( 𝑡 ∈ ( 𝑎 𝑖 𝑐 ) ↔ 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) ) |
| 19 |
18
|
rexbidv |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) → ( ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑎 𝑖 𝑐 ) ↔ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) ) |
| 20 |
15 19
|
anbi12d |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) → ( ( ( 𝑎 ∈ ( 𝑝 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑝 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑎 𝑖 𝑐 ) ) ↔ ( ( 𝑎 ∈ ( 𝑃 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) ) ) |
| 21 |
12
|
eleq2d |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) → ( 𝑏 ∈ ( 𝑝 ∖ 𝑑 ) ↔ 𝑏 ∈ ( 𝑃 ∖ 𝑑 ) ) ) |
| 22 |
21 14
|
anbi12d |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) → ( ( 𝑏 ∈ ( 𝑝 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑝 ∖ 𝑑 ) ) ↔ ( 𝑏 ∈ ( 𝑃 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝑑 ) ) ) ) |
| 23 |
16
|
oveqd |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) → ( 𝑏 𝑖 𝑐 ) = ( 𝑏 𝐼 𝑐 ) ) |
| 24 |
23
|
eleq2d |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) → ( 𝑡 ∈ ( 𝑏 𝑖 𝑐 ) ↔ 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) ) |
| 25 |
24
|
rexbidv |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) → ( ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑏 𝑖 𝑐 ) ↔ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) ) |
| 26 |
22 25
|
anbi12d |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) → ( ( ( 𝑏 ∈ ( 𝑝 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑝 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑏 𝑖 𝑐 ) ) ↔ ( ( 𝑏 ∈ ( 𝑃 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) ) ) |
| 27 |
20 26
|
anbi12d |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) → ( ( ( ( 𝑎 ∈ ( 𝑝 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑝 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑎 𝑖 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑝 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑝 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑏 𝑖 𝑐 ) ) ) ↔ ( ( ( 𝑎 ∈ ( 𝑃 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑃 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) ) ) ) |
| 28 |
11 27
|
rexeqbidv |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑖 = 𝐼 ) → ( ∃ 𝑐 ∈ 𝑝 ( ( ( 𝑎 ∈ ( 𝑝 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑝 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑎 𝑖 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑝 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑝 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑏 𝑖 𝑐 ) ) ) ↔ ∃ 𝑐 ∈ 𝑃 ( ( ( 𝑎 ∈ ( 𝑃 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑃 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) ) ) ) |
| 29 |
1 2 28
|
sbcie2s |
⊢ ( 𝑔 = 𝐺 → ( [ ( Base ‘ 𝑔 ) / 𝑝 ] [ ( Itv ‘ 𝑔 ) / 𝑖 ] ∃ 𝑐 ∈ 𝑝 ( ( ( 𝑎 ∈ ( 𝑝 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑝 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑎 𝑖 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑝 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑝 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑏 𝑖 𝑐 ) ) ) ↔ ∃ 𝑐 ∈ 𝑃 ( ( ( 𝑎 ∈ ( 𝑃 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑃 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) ) ) ) |
| 30 |
29
|
opabbidv |
⊢ ( 𝑔 = 𝐺 → { 〈 𝑎 , 𝑏 〉 ∣ [ ( Base ‘ 𝑔 ) / 𝑝 ] [ ( Itv ‘ 𝑔 ) / 𝑖 ] ∃ 𝑐 ∈ 𝑝 ( ( ( 𝑎 ∈ ( 𝑝 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑝 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑎 𝑖 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑝 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑝 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑏 𝑖 𝑐 ) ) ) } = { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ 𝑃 ( ( ( 𝑎 ∈ ( 𝑃 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑃 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) ) } ) |
| 31 |
10 30
|
mpteq12dv |
⊢ ( 𝑔 = 𝐺 → ( 𝑑 ∈ ran ( LineG ‘ 𝑔 ) ↦ { 〈 𝑎 , 𝑏 〉 ∣ [ ( Base ‘ 𝑔 ) / 𝑝 ] [ ( Itv ‘ 𝑔 ) / 𝑖 ] ∃ 𝑐 ∈ 𝑝 ( ( ( 𝑎 ∈ ( 𝑝 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑝 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑎 𝑖 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑝 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑝 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑏 𝑖 𝑐 ) ) ) } ) = ( 𝑑 ∈ ran 𝐿 ↦ { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ 𝑃 ( ( ( 𝑎 ∈ ( 𝑃 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑃 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) ) } ) ) |
| 32 |
|
df-hpg |
⊢ hpG = ( 𝑔 ∈ V ↦ ( 𝑑 ∈ ran ( LineG ‘ 𝑔 ) ↦ { 〈 𝑎 , 𝑏 〉 ∣ [ ( Base ‘ 𝑔 ) / 𝑝 ] [ ( Itv ‘ 𝑔 ) / 𝑖 ] ∃ 𝑐 ∈ 𝑝 ( ( ( 𝑎 ∈ ( 𝑝 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑝 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑎 𝑖 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑝 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑝 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑏 𝑖 𝑐 ) ) ) } ) ) |
| 33 |
3
|
fvexi |
⊢ 𝐿 ∈ V |
| 34 |
33
|
rnex |
⊢ ran 𝐿 ∈ V |
| 35 |
34
|
mptex |
⊢ ( 𝑑 ∈ ran 𝐿 ↦ { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ 𝑃 ( ( ( 𝑎 ∈ ( 𝑃 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑃 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) ) } ) ∈ V |
| 36 |
31 32 35
|
fvmpt |
⊢ ( 𝐺 ∈ V → ( hpG ‘ 𝐺 ) = ( 𝑑 ∈ ran 𝐿 ↦ { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ 𝑃 ( ( ( 𝑎 ∈ ( 𝑃 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑃 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) ) } ) ) |
| 37 |
5 7 36
|
3syl |
⊢ ( 𝜑 → ( hpG ‘ 𝐺 ) = ( 𝑑 ∈ ran 𝐿 ↦ { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ 𝑃 ( ( ( 𝑎 ∈ ( 𝑃 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑃 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) ) } ) ) |
| 38 |
|
difeq2 |
⊢ ( 𝑑 = 𝐷 → ( 𝑃 ∖ 𝑑 ) = ( 𝑃 ∖ 𝐷 ) ) |
| 39 |
38
|
eleq2d |
⊢ ( 𝑑 = 𝐷 → ( 𝑎 ∈ ( 𝑃 ∖ 𝑑 ) ↔ 𝑎 ∈ ( 𝑃 ∖ 𝐷 ) ) ) |
| 40 |
38
|
eleq2d |
⊢ ( 𝑑 = 𝐷 → ( 𝑐 ∈ ( 𝑃 ∖ 𝑑 ) ↔ 𝑐 ∈ ( 𝑃 ∖ 𝐷 ) ) ) |
| 41 |
39 40
|
anbi12d |
⊢ ( 𝑑 = 𝐷 → ( ( 𝑎 ∈ ( 𝑃 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝑑 ) ) ↔ ( 𝑎 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝐷 ) ) ) ) |
| 42 |
|
rexeq |
⊢ ( 𝑑 = 𝐷 → ( ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ↔ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) ) |
| 43 |
41 42
|
anbi12d |
⊢ ( 𝑑 = 𝐷 → ( ( ( 𝑎 ∈ ( 𝑃 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) ↔ ( ( 𝑎 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) ) ) |
| 44 |
38
|
eleq2d |
⊢ ( 𝑑 = 𝐷 → ( 𝑏 ∈ ( 𝑃 ∖ 𝑑 ) ↔ 𝑏 ∈ ( 𝑃 ∖ 𝐷 ) ) ) |
| 45 |
44 40
|
anbi12d |
⊢ ( 𝑑 = 𝐷 → ( ( 𝑏 ∈ ( 𝑃 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝑑 ) ) ↔ ( 𝑏 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝐷 ) ) ) ) |
| 46 |
|
rexeq |
⊢ ( 𝑑 = 𝐷 → ( ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ↔ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) ) |
| 47 |
45 46
|
anbi12d |
⊢ ( 𝑑 = 𝐷 → ( ( ( 𝑏 ∈ ( 𝑃 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) ↔ ( ( 𝑏 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) ) ) |
| 48 |
43 47
|
anbi12d |
⊢ ( 𝑑 = 𝐷 → ( ( ( ( 𝑎 ∈ ( 𝑃 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑃 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) ) ↔ ( ( ( 𝑎 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) ) ) ) |
| 49 |
48
|
rexbidv |
⊢ ( 𝑑 = 𝐷 → ( ∃ 𝑐 ∈ 𝑃 ( ( ( 𝑎 ∈ ( 𝑃 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑃 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) ) ↔ ∃ 𝑐 ∈ 𝑃 ( ( ( 𝑎 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) ) ) ) |
| 50 |
49
|
opabbidv |
⊢ ( 𝑑 = 𝐷 → { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ 𝑃 ( ( ( 𝑎 ∈ ( 𝑃 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑃 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) ) } = { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ 𝑃 ( ( ( 𝑎 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) ) } ) |
| 51 |
50
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑑 = 𝐷 ) → { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ 𝑃 ( ( ( 𝑎 ∈ ( 𝑃 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑃 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) ) } = { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ 𝑃 ( ( ( 𝑎 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) ) } ) |
| 52 |
|
df-xp |
⊢ ( 𝑃 × 𝑃 ) = { 〈 𝑎 , 𝑏 〉 ∣ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) } |
| 53 |
1
|
fvexi |
⊢ 𝑃 ∈ V |
| 54 |
53 53
|
xpex |
⊢ ( 𝑃 × 𝑃 ) ∈ V |
| 55 |
52 54
|
eqeltrri |
⊢ { 〈 𝑎 , 𝑏 〉 ∣ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) } ∈ V |
| 56 |
|
eldifi |
⊢ ( 𝑎 ∈ ( 𝑃 ∖ 𝐷 ) → 𝑎 ∈ 𝑃 ) |
| 57 |
|
eldifi |
⊢ ( 𝑏 ∈ ( 𝑃 ∖ 𝐷 ) → 𝑏 ∈ 𝑃 ) |
| 58 |
56 57
|
anim12i |
⊢ ( ( 𝑎 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑏 ∈ ( 𝑃 ∖ 𝐷 ) ) → ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ) |
| 59 |
58
|
ad2ant2r |
⊢ ( ( ( 𝑎 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ( 𝑏 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝐷 ) ) ) → ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ) |
| 60 |
59
|
ad2ant2r |
⊢ ( ( ( ( 𝑎 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) ) → ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ) |
| 61 |
60
|
rexlimivw |
⊢ ( ∃ 𝑐 ∈ 𝑃 ( ( ( 𝑎 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) ) → ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ) |
| 62 |
61
|
ssopab2i |
⊢ { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ 𝑃 ( ( ( 𝑎 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) ) } ⊆ { 〈 𝑎 , 𝑏 〉 ∣ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) } |
| 63 |
55 62
|
ssexi |
⊢ { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ 𝑃 ( ( ( 𝑎 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) ) } ∈ V |
| 64 |
63
|
a1i |
⊢ ( 𝜑 → { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ 𝑃 ( ( ( 𝑎 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) ) } ∈ V ) |
| 65 |
37 51 6 64
|
fvmptd |
⊢ ( 𝜑 → ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) = { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ 𝑃 ( ( ( 𝑎 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) ) } ) |
| 66 |
|
vex |
⊢ 𝑎 ∈ V |
| 67 |
|
vex |
⊢ 𝑐 ∈ V |
| 68 |
|
eleq1w |
⊢ ( 𝑒 = 𝑎 → ( 𝑒 ∈ ( 𝑃 ∖ 𝐷 ) ↔ 𝑎 ∈ ( 𝑃 ∖ 𝐷 ) ) ) |
| 69 |
68
|
anbi1d |
⊢ ( 𝑒 = 𝑎 → ( ( 𝑒 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑓 ∈ ( 𝑃 ∖ 𝐷 ) ) ↔ ( 𝑎 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑓 ∈ ( 𝑃 ∖ 𝐷 ) ) ) ) |
| 70 |
|
oveq1 |
⊢ ( 𝑒 = 𝑎 → ( 𝑒 𝐼 𝑓 ) = ( 𝑎 𝐼 𝑓 ) ) |
| 71 |
70
|
eleq2d |
⊢ ( 𝑒 = 𝑎 → ( 𝑡 ∈ ( 𝑒 𝐼 𝑓 ) ↔ 𝑡 ∈ ( 𝑎 𝐼 𝑓 ) ) ) |
| 72 |
71
|
rexbidv |
⊢ ( 𝑒 = 𝑎 → ( ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑒 𝐼 𝑓 ) ↔ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑓 ) ) ) |
| 73 |
69 72
|
anbi12d |
⊢ ( 𝑒 = 𝑎 → ( ( ( 𝑒 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑓 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑒 𝐼 𝑓 ) ) ↔ ( ( 𝑎 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑓 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑓 ) ) ) ) |
| 74 |
|
eleq1w |
⊢ ( 𝑓 = 𝑐 → ( 𝑓 ∈ ( 𝑃 ∖ 𝐷 ) ↔ 𝑐 ∈ ( 𝑃 ∖ 𝐷 ) ) ) |
| 75 |
74
|
anbi2d |
⊢ ( 𝑓 = 𝑐 → ( ( 𝑎 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑓 ∈ ( 𝑃 ∖ 𝐷 ) ) ↔ ( 𝑎 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝐷 ) ) ) ) |
| 76 |
|
oveq2 |
⊢ ( 𝑓 = 𝑐 → ( 𝑎 𝐼 𝑓 ) = ( 𝑎 𝐼 𝑐 ) ) |
| 77 |
76
|
eleq2d |
⊢ ( 𝑓 = 𝑐 → ( 𝑡 ∈ ( 𝑎 𝐼 𝑓 ) ↔ 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) ) |
| 78 |
77
|
rexbidv |
⊢ ( 𝑓 = 𝑐 → ( ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑓 ) ↔ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) ) |
| 79 |
75 78
|
anbi12d |
⊢ ( 𝑓 = 𝑐 → ( ( ( 𝑎 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑓 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑓 ) ) ↔ ( ( 𝑎 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) ) ) |
| 80 |
|
simpl |
⊢ ( ( 𝑎 = 𝑒 ∧ 𝑏 = 𝑓 ) → 𝑎 = 𝑒 ) |
| 81 |
80
|
eleq1d |
⊢ ( ( 𝑎 = 𝑒 ∧ 𝑏 = 𝑓 ) → ( 𝑎 ∈ ( 𝑃 ∖ 𝐷 ) ↔ 𝑒 ∈ ( 𝑃 ∖ 𝐷 ) ) ) |
| 82 |
|
simpr |
⊢ ( ( 𝑎 = 𝑒 ∧ 𝑏 = 𝑓 ) → 𝑏 = 𝑓 ) |
| 83 |
82
|
eleq1d |
⊢ ( ( 𝑎 = 𝑒 ∧ 𝑏 = 𝑓 ) → ( 𝑏 ∈ ( 𝑃 ∖ 𝐷 ) ↔ 𝑓 ∈ ( 𝑃 ∖ 𝐷 ) ) ) |
| 84 |
81 83
|
anbi12d |
⊢ ( ( 𝑎 = 𝑒 ∧ 𝑏 = 𝑓 ) → ( ( 𝑎 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑏 ∈ ( 𝑃 ∖ 𝐷 ) ) ↔ ( 𝑒 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑓 ∈ ( 𝑃 ∖ 𝐷 ) ) ) ) |
| 85 |
|
oveq12 |
⊢ ( ( 𝑎 = 𝑒 ∧ 𝑏 = 𝑓 ) → ( 𝑎 𝐼 𝑏 ) = ( 𝑒 𝐼 𝑓 ) ) |
| 86 |
85
|
eleq2d |
⊢ ( ( 𝑎 = 𝑒 ∧ 𝑏 = 𝑓 ) → ( 𝑡 ∈ ( 𝑎 𝐼 𝑏 ) ↔ 𝑡 ∈ ( 𝑒 𝐼 𝑓 ) ) ) |
| 87 |
86
|
rexbidv |
⊢ ( ( 𝑎 = 𝑒 ∧ 𝑏 = 𝑓 ) → ( ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑏 ) ↔ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑒 𝐼 𝑓 ) ) ) |
| 88 |
84 87
|
anbi12d |
⊢ ( ( 𝑎 = 𝑒 ∧ 𝑏 = 𝑓 ) → ( ( ( 𝑎 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑏 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑏 ) ) ↔ ( ( 𝑒 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑓 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑒 𝐼 𝑓 ) ) ) ) |
| 89 |
88
|
cbvopabv |
⊢ { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑏 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑏 ) ) } = { 〈 𝑒 , 𝑓 〉 ∣ ( ( 𝑒 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑓 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑒 𝐼 𝑓 ) ) } |
| 90 |
4 89
|
eqtri |
⊢ 𝑂 = { 〈 𝑒 , 𝑓 〉 ∣ ( ( 𝑒 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑓 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑒 𝐼 𝑓 ) ) } |
| 91 |
66 67 73 79 90
|
brab |
⊢ ( 𝑎 𝑂 𝑐 ↔ ( ( 𝑎 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) ) |
| 92 |
|
vex |
⊢ 𝑏 ∈ V |
| 93 |
|
eleq1w |
⊢ ( 𝑒 = 𝑏 → ( 𝑒 ∈ ( 𝑃 ∖ 𝐷 ) ↔ 𝑏 ∈ ( 𝑃 ∖ 𝐷 ) ) ) |
| 94 |
93
|
anbi1d |
⊢ ( 𝑒 = 𝑏 → ( ( 𝑒 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑓 ∈ ( 𝑃 ∖ 𝐷 ) ) ↔ ( 𝑏 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑓 ∈ ( 𝑃 ∖ 𝐷 ) ) ) ) |
| 95 |
|
oveq1 |
⊢ ( 𝑒 = 𝑏 → ( 𝑒 𝐼 𝑓 ) = ( 𝑏 𝐼 𝑓 ) ) |
| 96 |
95
|
eleq2d |
⊢ ( 𝑒 = 𝑏 → ( 𝑡 ∈ ( 𝑒 𝐼 𝑓 ) ↔ 𝑡 ∈ ( 𝑏 𝐼 𝑓 ) ) ) |
| 97 |
96
|
rexbidv |
⊢ ( 𝑒 = 𝑏 → ( ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑒 𝐼 𝑓 ) ↔ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑏 𝐼 𝑓 ) ) ) |
| 98 |
94 97
|
anbi12d |
⊢ ( 𝑒 = 𝑏 → ( ( ( 𝑒 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑓 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑒 𝐼 𝑓 ) ) ↔ ( ( 𝑏 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑓 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑏 𝐼 𝑓 ) ) ) ) |
| 99 |
74
|
anbi2d |
⊢ ( 𝑓 = 𝑐 → ( ( 𝑏 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑓 ∈ ( 𝑃 ∖ 𝐷 ) ) ↔ ( 𝑏 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝐷 ) ) ) ) |
| 100 |
|
oveq2 |
⊢ ( 𝑓 = 𝑐 → ( 𝑏 𝐼 𝑓 ) = ( 𝑏 𝐼 𝑐 ) ) |
| 101 |
100
|
eleq2d |
⊢ ( 𝑓 = 𝑐 → ( 𝑡 ∈ ( 𝑏 𝐼 𝑓 ) ↔ 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) ) |
| 102 |
101
|
rexbidv |
⊢ ( 𝑓 = 𝑐 → ( ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑏 𝐼 𝑓 ) ↔ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) ) |
| 103 |
99 102
|
anbi12d |
⊢ ( 𝑓 = 𝑐 → ( ( ( 𝑏 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑓 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑏 𝐼 𝑓 ) ) ↔ ( ( 𝑏 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) ) ) |
| 104 |
92 67 98 103 90
|
brab |
⊢ ( 𝑏 𝑂 𝑐 ↔ ( ( 𝑏 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) ) |
| 105 |
91 104
|
anbi12i |
⊢ ( ( 𝑎 𝑂 𝑐 ∧ 𝑏 𝑂 𝑐 ) ↔ ( ( ( 𝑎 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) ) ) |
| 106 |
105
|
rexbii |
⊢ ( ∃ 𝑐 ∈ 𝑃 ( 𝑎 𝑂 𝑐 ∧ 𝑏 𝑂 𝑐 ) ↔ ∃ 𝑐 ∈ 𝑃 ( ( ( 𝑎 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) ) ) |
| 107 |
106
|
opabbii |
⊢ { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ 𝑃 ( 𝑎 𝑂 𝑐 ∧ 𝑏 𝑂 𝑐 ) } = { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ 𝑃 ( ( ( 𝑎 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑐 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) ) } |
| 108 |
65 107
|
eqtr4di |
⊢ ( 𝜑 → ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) = { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ 𝑃 ( 𝑎 𝑂 𝑐 ∧ 𝑏 𝑂 𝑐 ) } ) |