Step |
Hyp |
Ref |
Expression |
1 |
|
feq1 |
⊢ ( 𝑔 = 𝐹 → ( 𝑔 : ℝ ⟶ ℝ ↔ 𝐹 : ℝ ⟶ ℝ ) ) |
2 |
|
rneq |
⊢ ( 𝑔 = 𝐹 → ran 𝑔 = ran 𝐹 ) |
3 |
2
|
eleq1d |
⊢ ( 𝑔 = 𝐹 → ( ran 𝑔 ∈ Fin ↔ ran 𝐹 ∈ Fin ) ) |
4 |
|
cnveq |
⊢ ( 𝑔 = 𝐹 → ◡ 𝑔 = ◡ 𝐹 ) |
5 |
4
|
imaeq1d |
⊢ ( 𝑔 = 𝐹 → ( ◡ 𝑔 “ ( ℝ ∖ { 0 } ) ) = ( ◡ 𝐹 “ ( ℝ ∖ { 0 } ) ) ) |
6 |
5
|
fveq2d |
⊢ ( 𝑔 = 𝐹 → ( vol ‘ ( ◡ 𝑔 “ ( ℝ ∖ { 0 } ) ) ) = ( vol ‘ ( ◡ 𝐹 “ ( ℝ ∖ { 0 } ) ) ) ) |
7 |
6
|
eleq1d |
⊢ ( 𝑔 = 𝐹 → ( ( vol ‘ ( ◡ 𝑔 “ ( ℝ ∖ { 0 } ) ) ) ∈ ℝ ↔ ( vol ‘ ( ◡ 𝐹 “ ( ℝ ∖ { 0 } ) ) ) ∈ ℝ ) ) |
8 |
1 3 7
|
3anbi123d |
⊢ ( 𝑔 = 𝐹 → ( ( 𝑔 : ℝ ⟶ ℝ ∧ ran 𝑔 ∈ Fin ∧ ( vol ‘ ( ◡ 𝑔 “ ( ℝ ∖ { 0 } ) ) ) ∈ ℝ ) ↔ ( 𝐹 : ℝ ⟶ ℝ ∧ ran 𝐹 ∈ Fin ∧ ( vol ‘ ( ◡ 𝐹 “ ( ℝ ∖ { 0 } ) ) ) ∈ ℝ ) ) ) |
9 |
|
sumex |
⊢ Σ 𝑥 ∈ ( ran 𝑓 ∖ { 0 } ) ( 𝑥 · ( vol ‘ ( ◡ 𝑓 “ { 𝑥 } ) ) ) ∈ V |
10 |
|
df-itg1 |
⊢ ∫1 = ( 𝑓 ∈ { 𝑔 ∈ MblFn ∣ ( 𝑔 : ℝ ⟶ ℝ ∧ ran 𝑔 ∈ Fin ∧ ( vol ‘ ( ◡ 𝑔 “ ( ℝ ∖ { 0 } ) ) ) ∈ ℝ ) } ↦ Σ 𝑥 ∈ ( ran 𝑓 ∖ { 0 } ) ( 𝑥 · ( vol ‘ ( ◡ 𝑓 “ { 𝑥 } ) ) ) ) |
11 |
9 10
|
dmmpti |
⊢ dom ∫1 = { 𝑔 ∈ MblFn ∣ ( 𝑔 : ℝ ⟶ ℝ ∧ ran 𝑔 ∈ Fin ∧ ( vol ‘ ( ◡ 𝑔 “ ( ℝ ∖ { 0 } ) ) ) ∈ ℝ ) } |
12 |
8 11
|
elrab2 |
⊢ ( 𝐹 ∈ dom ∫1 ↔ ( 𝐹 ∈ MblFn ∧ ( 𝐹 : ℝ ⟶ ℝ ∧ ran 𝐹 ∈ Fin ∧ ( vol ‘ ( ◡ 𝐹 “ ( ℝ ∖ { 0 } ) ) ) ∈ ℝ ) ) ) |