Step |
Hyp |
Ref |
Expression |
1 |
|
isibl.1 |
⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑇 ) , 𝑇 , 0 ) ) ) |
2 |
|
isibl.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑇 = ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) |
3 |
|
isibl.3 |
⊢ ( 𝜑 → dom 𝐹 = 𝐴 ) |
4 |
|
isibl.4 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) = 𝐵 ) |
5 |
|
fvex |
⊢ ( ℜ ‘ ( ( 𝑓 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) ∈ V |
6 |
|
breq2 |
⊢ ( 𝑦 = ( ℜ ‘ ( ( 𝑓 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) → ( 0 ≤ 𝑦 ↔ 0 ≤ ( ℜ ‘ ( ( 𝑓 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) ) ) |
7 |
6
|
anbi2d |
⊢ ( 𝑦 = ( ℜ ‘ ( ( 𝑓 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) → ( ( 𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦 ) ↔ ( 𝑥 ∈ dom 𝑓 ∧ 0 ≤ ( ℜ ‘ ( ( 𝑓 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) ) ) ) |
8 |
|
id |
⊢ ( 𝑦 = ( ℜ ‘ ( ( 𝑓 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) → 𝑦 = ( ℜ ‘ ( ( 𝑓 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) ) |
9 |
7 8
|
ifbieq1d |
⊢ ( 𝑦 = ( ℜ ‘ ( ( 𝑓 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) → if ( ( 𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) = if ( ( 𝑥 ∈ dom 𝑓 ∧ 0 ≤ ( ℜ ‘ ( ( 𝑓 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( 𝑓 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) , 0 ) ) |
10 |
5 9
|
csbie |
⊢ ⦋ ( ℜ ‘ ( ( 𝑓 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) / 𝑦 ⦌ if ( ( 𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) = if ( ( 𝑥 ∈ dom 𝑓 ∧ 0 ≤ ( ℜ ‘ ( ( 𝑓 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( 𝑓 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) , 0 ) |
11 |
|
dmeq |
⊢ ( 𝑓 = 𝐹 → dom 𝑓 = dom 𝐹 ) |
12 |
11
|
eleq2d |
⊢ ( 𝑓 = 𝐹 → ( 𝑥 ∈ dom 𝑓 ↔ 𝑥 ∈ dom 𝐹 ) ) |
13 |
|
fveq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
14 |
13
|
fvoveq1d |
⊢ ( 𝑓 = 𝐹 → ( ℜ ‘ ( ( 𝑓 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) = ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) ) |
15 |
14
|
breq2d |
⊢ ( 𝑓 = 𝐹 → ( 0 ≤ ( ℜ ‘ ( ( 𝑓 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) ↔ 0 ≤ ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) ) ) |
16 |
12 15
|
anbi12d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑥 ∈ dom 𝑓 ∧ 0 ≤ ( ℜ ‘ ( ( 𝑓 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) ) ↔ ( 𝑥 ∈ dom 𝐹 ∧ 0 ≤ ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) ) ) ) |
17 |
16 14
|
ifbieq1d |
⊢ ( 𝑓 = 𝐹 → if ( ( 𝑥 ∈ dom 𝑓 ∧ 0 ≤ ( ℜ ‘ ( ( 𝑓 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( 𝑓 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) , 0 ) = if ( ( 𝑥 ∈ dom 𝐹 ∧ 0 ≤ ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) , 0 ) ) |
18 |
10 17
|
eqtrid |
⊢ ( 𝑓 = 𝐹 → ⦋ ( ℜ ‘ ( ( 𝑓 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) / 𝑦 ⦌ if ( ( 𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) = if ( ( 𝑥 ∈ dom 𝐹 ∧ 0 ≤ ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) , 0 ) ) |
19 |
18
|
mpteq2dv |
⊢ ( 𝑓 = 𝐹 → ( 𝑥 ∈ ℝ ↦ ⦋ ( ℜ ‘ ( ( 𝑓 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) / 𝑦 ⦌ if ( ( 𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ dom 𝐹 ∧ 0 ≤ ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) |
20 |
19
|
fveq2d |
⊢ ( 𝑓 = 𝐹 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ ⦋ ( ℜ ‘ ( ( 𝑓 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) / 𝑦 ⦌ if ( ( 𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ dom 𝐹 ∧ 0 ≤ ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) |
21 |
20
|
eleq1d |
⊢ ( 𝑓 = 𝐹 → ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ ⦋ ( ℜ ‘ ( ( 𝑓 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) / 𝑦 ⦌ if ( ( 𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) ) ∈ ℝ ↔ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ dom 𝐹 ∧ 0 ≤ ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ∈ ℝ ) ) |
22 |
21
|
ralbidv |
⊢ ( 𝑓 = 𝐹 → ( ∀ 𝑘 ∈ ( 0 ... 3 ) ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ ⦋ ( ℜ ‘ ( ( 𝑓 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) / 𝑦 ⦌ if ( ( 𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) ) ∈ ℝ ↔ ∀ 𝑘 ∈ ( 0 ... 3 ) ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ dom 𝐹 ∧ 0 ≤ ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ∈ ℝ ) ) |
23 |
|
df-ibl |
⊢ 𝐿1 = { 𝑓 ∈ MblFn ∣ ∀ 𝑘 ∈ ( 0 ... 3 ) ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ ⦋ ( ℜ ‘ ( ( 𝑓 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) / 𝑦 ⦌ if ( ( 𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) ) ∈ ℝ } |
24 |
22 23
|
elrab2 |
⊢ ( 𝐹 ∈ 𝐿1 ↔ ( 𝐹 ∈ MblFn ∧ ∀ 𝑘 ∈ ( 0 ... 3 ) ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ dom 𝐹 ∧ 0 ≤ ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ∈ ℝ ) ) |
25 |
3
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ dom 𝐹 ↔ 𝑥 ∈ 𝐴 ) ) |
26 |
25
|
anbi1d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ dom 𝐹 ∧ 0 ≤ ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) ) ) ) |
27 |
26
|
ifbid |
⊢ ( 𝜑 → if ( ( 𝑥 ∈ dom 𝐹 ∧ 0 ≤ ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) , 0 ) = if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) , 0 ) ) |
28 |
4
|
fvoveq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) = ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) |
29 |
28 2
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) = 𝑇 ) |
30 |
29
|
ibllem |
⊢ ( 𝜑 → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) , 0 ) = if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑇 ) , 𝑇 , 0 ) ) |
31 |
27 30
|
eqtrd |
⊢ ( 𝜑 → if ( ( 𝑥 ∈ dom 𝐹 ∧ 0 ≤ ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) , 0 ) = if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑇 ) , 𝑇 , 0 ) ) |
32 |
31
|
mpteq2dv |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ dom 𝐹 ∧ 0 ≤ ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑇 ) , 𝑇 , 0 ) ) ) |
33 |
32 1
|
eqtr4d |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ dom 𝐹 ∧ 0 ≤ ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) , 0 ) ) = 𝐺 ) |
34 |
33
|
fveq2d |
⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ dom 𝐹 ∧ 0 ≤ ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) = ( ∫2 ‘ 𝐺 ) ) |
35 |
34
|
eleq1d |
⊢ ( 𝜑 → ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ dom 𝐹 ∧ 0 ≤ ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ∈ ℝ ↔ ( ∫2 ‘ 𝐺 ) ∈ ℝ ) ) |
36 |
35
|
ralbidv |
⊢ ( 𝜑 → ( ∀ 𝑘 ∈ ( 0 ... 3 ) ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ dom 𝐹 ∧ 0 ≤ ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ∈ ℝ ↔ ∀ 𝑘 ∈ ( 0 ... 3 ) ( ∫2 ‘ 𝐺 ) ∈ ℝ ) ) |
37 |
36
|
anbi2d |
⊢ ( 𝜑 → ( ( 𝐹 ∈ MblFn ∧ ∀ 𝑘 ∈ ( 0 ... 3 ) ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ dom 𝐹 ∧ 0 ≤ ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ∈ ℝ ) ↔ ( 𝐹 ∈ MblFn ∧ ∀ 𝑘 ∈ ( 0 ... 3 ) ( ∫2 ‘ 𝐺 ) ∈ ℝ ) ) ) |
38 |
24 37
|
syl5bb |
⊢ ( 𝜑 → ( 𝐹 ∈ 𝐿1 ↔ ( 𝐹 ∈ MblFn ∧ ∀ 𝑘 ∈ ( 0 ... 3 ) ( ∫2 ‘ 𝐺 ) ∈ ℝ ) ) ) |