| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isibl.1 | ⊢ ( 𝜑  →  𝐺  =  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝑇 ) ,  𝑇 ,  0 ) ) ) | 
						
							| 2 |  | isibl.2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝑇  =  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ) | 
						
							| 3 |  | isibl2.3 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  𝑉 ) | 
						
							| 4 |  | nfv | ⊢ Ⅎ 𝑥 𝑦  ∈  𝐴 | 
						
							| 5 |  | nfcv | ⊢ Ⅎ 𝑥 0 | 
						
							| 6 |  | nfcv | ⊢ Ⅎ 𝑥  ≤ | 
						
							| 7 |  | nfcv | ⊢ Ⅎ 𝑥 ℜ | 
						
							| 8 |  | nffvmpt1 | ⊢ Ⅎ 𝑥 ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑦 ) | 
						
							| 9 |  | nfcv | ⊢ Ⅎ 𝑥  / | 
						
							| 10 |  | nfcv | ⊢ Ⅎ 𝑥 ( i ↑ 𝑘 ) | 
						
							| 11 | 8 9 10 | nfov | ⊢ Ⅎ 𝑥 ( ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑦 )  /  ( i ↑ 𝑘 ) ) | 
						
							| 12 | 7 11 | nffv | ⊢ Ⅎ 𝑥 ( ℜ ‘ ( ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑦 )  /  ( i ↑ 𝑘 ) ) ) | 
						
							| 13 | 5 6 12 | nfbr | ⊢ Ⅎ 𝑥 0  ≤  ( ℜ ‘ ( ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑦 )  /  ( i ↑ 𝑘 ) ) ) | 
						
							| 14 | 4 13 | nfan | ⊢ Ⅎ 𝑥 ( 𝑦  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑦 )  /  ( i ↑ 𝑘 ) ) ) ) | 
						
							| 15 | 14 12 5 | nfif | ⊢ Ⅎ 𝑥 if ( ( 𝑦  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑦 )  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑦 )  /  ( i ↑ 𝑘 ) ) ) ,  0 ) | 
						
							| 16 |  | nfcv | ⊢ Ⅎ 𝑦 if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 )  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 )  /  ( i ↑ 𝑘 ) ) ) ,  0 ) | 
						
							| 17 |  | eleq1w | ⊢ ( 𝑦  =  𝑥  →  ( 𝑦  ∈  𝐴  ↔  𝑥  ∈  𝐴 ) ) | 
						
							| 18 |  | fveq2 | ⊢ ( 𝑦  =  𝑥  →  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑦 )  =  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 ) ) | 
						
							| 19 | 18 | fvoveq1d | ⊢ ( 𝑦  =  𝑥  →  ( ℜ ‘ ( ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑦 )  /  ( i ↑ 𝑘 ) ) )  =  ( ℜ ‘ ( ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 )  /  ( i ↑ 𝑘 ) ) ) ) | 
						
							| 20 | 19 | breq2d | ⊢ ( 𝑦  =  𝑥  →  ( 0  ≤  ( ℜ ‘ ( ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑦 )  /  ( i ↑ 𝑘 ) ) )  ↔  0  ≤  ( ℜ ‘ ( ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 )  /  ( i ↑ 𝑘 ) ) ) ) ) | 
						
							| 21 | 17 20 | anbi12d | ⊢ ( 𝑦  =  𝑥  →  ( ( 𝑦  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑦 )  /  ( i ↑ 𝑘 ) ) ) )  ↔  ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 )  /  ( i ↑ 𝑘 ) ) ) ) ) ) | 
						
							| 22 | 21 19 | ifbieq1d | ⊢ ( 𝑦  =  𝑥  →  if ( ( 𝑦  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑦 )  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑦 )  /  ( i ↑ 𝑘 ) ) ) ,  0 )  =  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 )  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 )  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) | 
						
							| 23 | 15 16 22 | cbvmpt | ⊢ ( 𝑦  ∈  ℝ  ↦  if ( ( 𝑦  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑦 )  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑦 )  /  ( i ↑ 𝑘 ) ) ) ,  0 ) )  =  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 )  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 )  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) | 
						
							| 24 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  𝐴 ) | 
						
							| 25 |  | eqid | ⊢ ( 𝑥  ∈  𝐴  ↦  𝐵 )  =  ( 𝑥  ∈  𝐴  ↦  𝐵 ) | 
						
							| 26 | 25 | fvmpt2 | ⊢ ( ( 𝑥  ∈  𝐴  ∧  𝐵  ∈  𝑉 )  →  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 )  =  𝐵 ) | 
						
							| 27 | 24 3 26 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 )  =  𝐵 ) | 
						
							| 28 | 27 | fvoveq1d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ℜ ‘ ( ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 )  /  ( i ↑ 𝑘 ) ) )  =  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ) | 
						
							| 29 | 28 2 | eqtr4d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ℜ ‘ ( ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 )  /  ( i ↑ 𝑘 ) ) )  =  𝑇 ) | 
						
							| 30 | 29 | ibllem | ⊢ ( 𝜑  →  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 )  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 )  /  ( i ↑ 𝑘 ) ) ) ,  0 )  =  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝑇 ) ,  𝑇 ,  0 ) ) | 
						
							| 31 | 30 | mpteq2dv | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 )  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 )  /  ( i ↑ 𝑘 ) ) ) ,  0 ) )  =  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝑇 ) ,  𝑇 ,  0 ) ) ) | 
						
							| 32 | 23 31 | eqtrid | ⊢ ( 𝜑  →  ( 𝑦  ∈  ℝ  ↦  if ( ( 𝑦  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑦 )  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑦 )  /  ( i ↑ 𝑘 ) ) ) ,  0 ) )  =  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝑇 ) ,  𝑇 ,  0 ) ) ) | 
						
							| 33 | 1 32 | eqtr4d | ⊢ ( 𝜑  →  𝐺  =  ( 𝑦  ∈  ℝ  ↦  if ( ( 𝑦  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑦 )  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑦 )  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) ) | 
						
							| 34 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐴 )  →  ( ℜ ‘ ( ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑦 )  /  ( i ↑ 𝑘 ) ) )  =  ( ℜ ‘ ( ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑦 )  /  ( i ↑ 𝑘 ) ) ) ) | 
						
							| 35 | 25 3 | dmmptd | ⊢ ( 𝜑  →  dom  ( 𝑥  ∈  𝐴  ↦  𝐵 )  =  𝐴 ) | 
						
							| 36 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐴 )  →  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑦 )  =  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑦 ) ) | 
						
							| 37 | 33 34 35 36 | isibl | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  𝐿1  ↔  ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  MblFn  ∧  ∀ 𝑘  ∈  ( 0 ... 3 ) ( ∫2 ‘ 𝐺 )  ∈  ℝ ) ) ) |