Metamath Proof Explorer


Theorem isidom

Description: An integral domain is a commutative domain. (Contributed by Mario Carneiro, 17-Jun-2015)

Ref Expression
Assertion isidom ( 𝑅 ∈ IDomn ↔ ( 𝑅 ∈ CRing ∧ 𝑅 ∈ Domn ) )

Proof

Step Hyp Ref Expression
1 df-idom IDomn = ( CRing ∩ Domn )
2 1 elin2 ( 𝑅 ∈ IDomn ↔ ( 𝑅 ∈ CRing ∧ 𝑅 ∈ Domn ) )