| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ficardom |
⊢ ( 𝐵 ∈ Fin → ( card ‘ 𝐵 ) ∈ ω ) |
| 2 |
|
isinf |
⊢ ( ¬ 𝐴 ∈ Fin → ∀ 𝑎 ∈ ω ∃ 𝑐 ( 𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ 𝑎 ) ) |
| 3 |
|
breq2 |
⊢ ( 𝑎 = ( card ‘ 𝐵 ) → ( 𝑐 ≈ 𝑎 ↔ 𝑐 ≈ ( card ‘ 𝐵 ) ) ) |
| 4 |
3
|
anbi2d |
⊢ ( 𝑎 = ( card ‘ 𝐵 ) → ( ( 𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ 𝑎 ) ↔ ( 𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ ( card ‘ 𝐵 ) ) ) ) |
| 5 |
4
|
exbidv |
⊢ ( 𝑎 = ( card ‘ 𝐵 ) → ( ∃ 𝑐 ( 𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ 𝑎 ) ↔ ∃ 𝑐 ( 𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ ( card ‘ 𝐵 ) ) ) ) |
| 6 |
5
|
rspcva |
⊢ ( ( ( card ‘ 𝐵 ) ∈ ω ∧ ∀ 𝑎 ∈ ω ∃ 𝑐 ( 𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ 𝑎 ) ) → ∃ 𝑐 ( 𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ ( card ‘ 𝐵 ) ) ) |
| 7 |
1 2 6
|
syl2anr |
⊢ ( ( ¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ∃ 𝑐 ( 𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ ( card ‘ 𝐵 ) ) ) |
| 8 |
|
simprr |
⊢ ( ( ( ¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ∧ ( 𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ ( card ‘ 𝐵 ) ) ) → 𝑐 ≈ ( card ‘ 𝐵 ) ) |
| 9 |
|
ficardid |
⊢ ( 𝐵 ∈ Fin → ( card ‘ 𝐵 ) ≈ 𝐵 ) |
| 10 |
9
|
ad2antlr |
⊢ ( ( ( ¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ∧ ( 𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ ( card ‘ 𝐵 ) ) ) → ( card ‘ 𝐵 ) ≈ 𝐵 ) |
| 11 |
|
entr |
⊢ ( ( 𝑐 ≈ ( card ‘ 𝐵 ) ∧ ( card ‘ 𝐵 ) ≈ 𝐵 ) → 𝑐 ≈ 𝐵 ) |
| 12 |
8 10 11
|
syl2anc |
⊢ ( ( ( ¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ∧ ( 𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ ( card ‘ 𝐵 ) ) ) → 𝑐 ≈ 𝐵 ) |
| 13 |
12
|
ensymd |
⊢ ( ( ( ¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ∧ ( 𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ ( card ‘ 𝐵 ) ) ) → 𝐵 ≈ 𝑐 ) |
| 14 |
|
bren |
⊢ ( 𝐵 ≈ 𝑐 ↔ ∃ 𝑓 𝑓 : 𝐵 –1-1-onto→ 𝑐 ) |
| 15 |
13 14
|
sylib |
⊢ ( ( ( ¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ∧ ( 𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ ( card ‘ 𝐵 ) ) ) → ∃ 𝑓 𝑓 : 𝐵 –1-1-onto→ 𝑐 ) |
| 16 |
|
f1of1 |
⊢ ( 𝑓 : 𝐵 –1-1-onto→ 𝑐 → 𝑓 : 𝐵 –1-1→ 𝑐 ) |
| 17 |
|
simplrl |
⊢ ( ( ( ( ¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ∧ ( 𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ ( card ‘ 𝐵 ) ) ) ∧ 𝑓 : 𝐵 –1-1-onto→ 𝑐 ) → 𝑐 ⊆ 𝐴 ) |
| 18 |
|
f1ss |
⊢ ( ( 𝑓 : 𝐵 –1-1→ 𝑐 ∧ 𝑐 ⊆ 𝐴 ) → 𝑓 : 𝐵 –1-1→ 𝐴 ) |
| 19 |
16 17 18
|
syl2an2 |
⊢ ( ( ( ( ¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ∧ ( 𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ ( card ‘ 𝐵 ) ) ) ∧ 𝑓 : 𝐵 –1-1-onto→ 𝑐 ) → 𝑓 : 𝐵 –1-1→ 𝐴 ) |
| 20 |
19
|
ex |
⊢ ( ( ( ¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ∧ ( 𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ ( card ‘ 𝐵 ) ) ) → ( 𝑓 : 𝐵 –1-1-onto→ 𝑐 → 𝑓 : 𝐵 –1-1→ 𝐴 ) ) |
| 21 |
20
|
eximdv |
⊢ ( ( ( ¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ∧ ( 𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ ( card ‘ 𝐵 ) ) ) → ( ∃ 𝑓 𝑓 : 𝐵 –1-1-onto→ 𝑐 → ∃ 𝑓 𝑓 : 𝐵 –1-1→ 𝐴 ) ) |
| 22 |
15 21
|
mpd |
⊢ ( ( ( ¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ∧ ( 𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ ( card ‘ 𝐵 ) ) ) → ∃ 𝑓 𝑓 : 𝐵 –1-1→ 𝐴 ) |
| 23 |
7 22
|
exlimddv |
⊢ ( ( ¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ∃ 𝑓 𝑓 : 𝐵 –1-1→ 𝐴 ) |