Step |
Hyp |
Ref |
Expression |
1 |
|
ficardom |
⊢ ( 𝐵 ∈ Fin → ( card ‘ 𝐵 ) ∈ ω ) |
2 |
|
isinf |
⊢ ( ¬ 𝐴 ∈ Fin → ∀ 𝑎 ∈ ω ∃ 𝑐 ( 𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ 𝑎 ) ) |
3 |
|
breq2 |
⊢ ( 𝑎 = ( card ‘ 𝐵 ) → ( 𝑐 ≈ 𝑎 ↔ 𝑐 ≈ ( card ‘ 𝐵 ) ) ) |
4 |
3
|
anbi2d |
⊢ ( 𝑎 = ( card ‘ 𝐵 ) → ( ( 𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ 𝑎 ) ↔ ( 𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ ( card ‘ 𝐵 ) ) ) ) |
5 |
4
|
exbidv |
⊢ ( 𝑎 = ( card ‘ 𝐵 ) → ( ∃ 𝑐 ( 𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ 𝑎 ) ↔ ∃ 𝑐 ( 𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ ( card ‘ 𝐵 ) ) ) ) |
6 |
5
|
rspcva |
⊢ ( ( ( card ‘ 𝐵 ) ∈ ω ∧ ∀ 𝑎 ∈ ω ∃ 𝑐 ( 𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ 𝑎 ) ) → ∃ 𝑐 ( 𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ ( card ‘ 𝐵 ) ) ) |
7 |
1 2 6
|
syl2anr |
⊢ ( ( ¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ∃ 𝑐 ( 𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ ( card ‘ 𝐵 ) ) ) |
8 |
|
simprr |
⊢ ( ( ( ¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ∧ ( 𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ ( card ‘ 𝐵 ) ) ) → 𝑐 ≈ ( card ‘ 𝐵 ) ) |
9 |
|
ficardid |
⊢ ( 𝐵 ∈ Fin → ( card ‘ 𝐵 ) ≈ 𝐵 ) |
10 |
9
|
ad2antlr |
⊢ ( ( ( ¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ∧ ( 𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ ( card ‘ 𝐵 ) ) ) → ( card ‘ 𝐵 ) ≈ 𝐵 ) |
11 |
|
entr |
⊢ ( ( 𝑐 ≈ ( card ‘ 𝐵 ) ∧ ( card ‘ 𝐵 ) ≈ 𝐵 ) → 𝑐 ≈ 𝐵 ) |
12 |
8 10 11
|
syl2anc |
⊢ ( ( ( ¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ∧ ( 𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ ( card ‘ 𝐵 ) ) ) → 𝑐 ≈ 𝐵 ) |
13 |
12
|
ensymd |
⊢ ( ( ( ¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ∧ ( 𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ ( card ‘ 𝐵 ) ) ) → 𝐵 ≈ 𝑐 ) |
14 |
|
bren |
⊢ ( 𝐵 ≈ 𝑐 ↔ ∃ 𝑓 𝑓 : 𝐵 –1-1-onto→ 𝑐 ) |
15 |
13 14
|
sylib |
⊢ ( ( ( ¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ∧ ( 𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ ( card ‘ 𝐵 ) ) ) → ∃ 𝑓 𝑓 : 𝐵 –1-1-onto→ 𝑐 ) |
16 |
|
f1of1 |
⊢ ( 𝑓 : 𝐵 –1-1-onto→ 𝑐 → 𝑓 : 𝐵 –1-1→ 𝑐 ) |
17 |
|
simplrl |
⊢ ( ( ( ( ¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ∧ ( 𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ ( card ‘ 𝐵 ) ) ) ∧ 𝑓 : 𝐵 –1-1-onto→ 𝑐 ) → 𝑐 ⊆ 𝐴 ) |
18 |
|
f1ss |
⊢ ( ( 𝑓 : 𝐵 –1-1→ 𝑐 ∧ 𝑐 ⊆ 𝐴 ) → 𝑓 : 𝐵 –1-1→ 𝐴 ) |
19 |
16 17 18
|
syl2an2 |
⊢ ( ( ( ( ¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ∧ ( 𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ ( card ‘ 𝐵 ) ) ) ∧ 𝑓 : 𝐵 –1-1-onto→ 𝑐 ) → 𝑓 : 𝐵 –1-1→ 𝐴 ) |
20 |
19
|
ex |
⊢ ( ( ( ¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ∧ ( 𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ ( card ‘ 𝐵 ) ) ) → ( 𝑓 : 𝐵 –1-1-onto→ 𝑐 → 𝑓 : 𝐵 –1-1→ 𝐴 ) ) |
21 |
20
|
eximdv |
⊢ ( ( ( ¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ∧ ( 𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ ( card ‘ 𝐵 ) ) ) → ( ∃ 𝑓 𝑓 : 𝐵 –1-1-onto→ 𝑐 → ∃ 𝑓 𝑓 : 𝐵 –1-1→ 𝐴 ) ) |
22 |
15 21
|
mpd |
⊢ ( ( ( ¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ∧ ( 𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ ( card ‘ 𝐵 ) ) ) → ∃ 𝑓 𝑓 : 𝐵 –1-1→ 𝐴 ) |
23 |
7 22
|
exlimddv |
⊢ ( ( ¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ∃ 𝑓 𝑓 : 𝐵 –1-1→ 𝐴 ) |