| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isinito.b | ⊢ 𝐵  =  ( Base ‘ 𝐶 ) | 
						
							| 2 |  | isinito.h | ⊢ 𝐻  =  ( Hom  ‘ 𝐶 ) | 
						
							| 3 |  | isinito.c | ⊢ ( 𝜑  →  𝐶  ∈  Cat ) | 
						
							| 4 |  | isinito.i | ⊢ ( 𝜑  →  𝐼  ∈  𝐵 ) | 
						
							| 5 | 3 1 2 | initoval | ⊢ ( 𝜑  →  ( InitO ‘ 𝐶 )  =  { 𝑖  ∈  𝐵  ∣  ∀ 𝑏  ∈  𝐵 ∃! ℎ ℎ  ∈  ( 𝑖 𝐻 𝑏 ) } ) | 
						
							| 6 | 5 | eleq2d | ⊢ ( 𝜑  →  ( 𝐼  ∈  ( InitO ‘ 𝐶 )  ↔  𝐼  ∈  { 𝑖  ∈  𝐵  ∣  ∀ 𝑏  ∈  𝐵 ∃! ℎ ℎ  ∈  ( 𝑖 𝐻 𝑏 ) } ) ) | 
						
							| 7 |  | oveq1 | ⊢ ( 𝑖  =  𝐼  →  ( 𝑖 𝐻 𝑏 )  =  ( 𝐼 𝐻 𝑏 ) ) | 
						
							| 8 | 7 | eleq2d | ⊢ ( 𝑖  =  𝐼  →  ( ℎ  ∈  ( 𝑖 𝐻 𝑏 )  ↔  ℎ  ∈  ( 𝐼 𝐻 𝑏 ) ) ) | 
						
							| 9 | 8 | eubidv | ⊢ ( 𝑖  =  𝐼  →  ( ∃! ℎ ℎ  ∈  ( 𝑖 𝐻 𝑏 )  ↔  ∃! ℎ ℎ  ∈  ( 𝐼 𝐻 𝑏 ) ) ) | 
						
							| 10 | 9 | ralbidv | ⊢ ( 𝑖  =  𝐼  →  ( ∀ 𝑏  ∈  𝐵 ∃! ℎ ℎ  ∈  ( 𝑖 𝐻 𝑏 )  ↔  ∀ 𝑏  ∈  𝐵 ∃! ℎ ℎ  ∈  ( 𝐼 𝐻 𝑏 ) ) ) | 
						
							| 11 | 10 | elrab3 | ⊢ ( 𝐼  ∈  𝐵  →  ( 𝐼  ∈  { 𝑖  ∈  𝐵  ∣  ∀ 𝑏  ∈  𝐵 ∃! ℎ ℎ  ∈  ( 𝑖 𝐻 𝑏 ) }  ↔  ∀ 𝑏  ∈  𝐵 ∃! ℎ ℎ  ∈  ( 𝐼 𝐻 𝑏 ) ) ) | 
						
							| 12 | 4 11 | syl | ⊢ ( 𝜑  →  ( 𝐼  ∈  { 𝑖  ∈  𝐵  ∣  ∀ 𝑏  ∈  𝐵 ∃! ℎ ℎ  ∈  ( 𝑖 𝐻 𝑏 ) }  ↔  ∀ 𝑏  ∈  𝐵 ∃! ℎ ℎ  ∈  ( 𝐼 𝐻 𝑏 ) ) ) | 
						
							| 13 | 6 12 | bitrd | ⊢ ( 𝜑  →  ( 𝐼  ∈  ( InitO ‘ 𝐶 )  ↔  ∀ 𝑏  ∈  𝐵 ∃! ℎ ℎ  ∈  ( 𝐼 𝐻 𝑏 ) ) ) |