Metamath Proof Explorer


Theorem isinv

Description: Value of the inverse relation. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses invfval.b 𝐵 = ( Base ‘ 𝐶 )
invfval.n 𝑁 = ( Inv ‘ 𝐶 )
invfval.c ( 𝜑𝐶 ∈ Cat )
invfval.x ( 𝜑𝑋𝐵 )
invfval.y ( 𝜑𝑌𝐵 )
invfval.s 𝑆 = ( Sect ‘ 𝐶 )
Assertion isinv ( 𝜑 → ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 ↔ ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺𝐺 ( 𝑌 𝑆 𝑋 ) 𝐹 ) ) )

Proof

Step Hyp Ref Expression
1 invfval.b 𝐵 = ( Base ‘ 𝐶 )
2 invfval.n 𝑁 = ( Inv ‘ 𝐶 )
3 invfval.c ( 𝜑𝐶 ∈ Cat )
4 invfval.x ( 𝜑𝑋𝐵 )
5 invfval.y ( 𝜑𝑌𝐵 )
6 invfval.s 𝑆 = ( Sect ‘ 𝐶 )
7 1 2 3 4 5 6 invfval ( 𝜑 → ( 𝑋 𝑁 𝑌 ) = ( ( 𝑋 𝑆 𝑌 ) ∩ ( 𝑌 𝑆 𝑋 ) ) )
8 7 breqd ( 𝜑 → ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺𝐹 ( ( 𝑋 𝑆 𝑌 ) ∩ ( 𝑌 𝑆 𝑋 ) ) 𝐺 ) )
9 brin ( 𝐹 ( ( 𝑋 𝑆 𝑌 ) ∩ ( 𝑌 𝑆 𝑋 ) ) 𝐺 ↔ ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺𝐹 ( 𝑌 𝑆 𝑋 ) 𝐺 ) )
10 8 9 bitrdi ( 𝜑 → ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 ↔ ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺𝐹 ( 𝑌 𝑆 𝑋 ) 𝐺 ) ) )
11 eqid ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 )
12 eqid ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 )
13 eqid ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 )
14 1 11 12 13 6 3 5 4 sectss ( 𝜑 → ( 𝑌 𝑆 𝑋 ) ⊆ ( ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) × ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) )
15 relxp Rel ( ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) × ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) )
16 relss ( ( 𝑌 𝑆 𝑋 ) ⊆ ( ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) × ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) → ( Rel ( ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) × ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) → Rel ( 𝑌 𝑆 𝑋 ) ) )
17 14 15 16 mpisyl ( 𝜑 → Rel ( 𝑌 𝑆 𝑋 ) )
18 relbrcnvg ( Rel ( 𝑌 𝑆 𝑋 ) → ( 𝐹 ( 𝑌 𝑆 𝑋 ) 𝐺𝐺 ( 𝑌 𝑆 𝑋 ) 𝐹 ) )
19 17 18 syl ( 𝜑 → ( 𝐹 ( 𝑌 𝑆 𝑋 ) 𝐺𝐺 ( 𝑌 𝑆 𝑋 ) 𝐹 ) )
20 19 anbi2d ( 𝜑 → ( ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺𝐹 ( 𝑌 𝑆 𝑋 ) 𝐺 ) ↔ ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺𝐺 ( 𝑌 𝑆 𝑋 ) 𝐹 ) ) )
21 10 20 bitrd ( 𝜑 → ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 ↔ ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺𝐺 ( 𝑌 𝑆 𝑋 ) 𝐹 ) ) )