Step |
Hyp |
Ref |
Expression |
1 |
|
invfval.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
2 |
|
invfval.n |
⊢ 𝑁 = ( Inv ‘ 𝐶 ) |
3 |
|
invfval.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
4 |
|
invfval.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
5 |
|
invfval.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
6 |
|
invfval.s |
⊢ 𝑆 = ( Sect ‘ 𝐶 ) |
7 |
1 2 3 4 5 6
|
invfval |
⊢ ( 𝜑 → ( 𝑋 𝑁 𝑌 ) = ( ( 𝑋 𝑆 𝑌 ) ∩ ◡ ( 𝑌 𝑆 𝑋 ) ) ) |
8 |
7
|
breqd |
⊢ ( 𝜑 → ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 ↔ 𝐹 ( ( 𝑋 𝑆 𝑌 ) ∩ ◡ ( 𝑌 𝑆 𝑋 ) ) 𝐺 ) ) |
9 |
|
brin |
⊢ ( 𝐹 ( ( 𝑋 𝑆 𝑌 ) ∩ ◡ ( 𝑌 𝑆 𝑋 ) ) 𝐺 ↔ ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ∧ 𝐹 ◡ ( 𝑌 𝑆 𝑋 ) 𝐺 ) ) |
10 |
8 9
|
bitrdi |
⊢ ( 𝜑 → ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 ↔ ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ∧ 𝐹 ◡ ( 𝑌 𝑆 𝑋 ) 𝐺 ) ) ) |
11 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
12 |
|
eqid |
⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) |
13 |
|
eqid |
⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) |
14 |
1 11 12 13 6 3 5 4
|
sectss |
⊢ ( 𝜑 → ( 𝑌 𝑆 𝑋 ) ⊆ ( ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) × ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) ) |
15 |
|
relxp |
⊢ Rel ( ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) × ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) |
16 |
|
relss |
⊢ ( ( 𝑌 𝑆 𝑋 ) ⊆ ( ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) × ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) → ( Rel ( ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) × ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) → Rel ( 𝑌 𝑆 𝑋 ) ) ) |
17 |
14 15 16
|
mpisyl |
⊢ ( 𝜑 → Rel ( 𝑌 𝑆 𝑋 ) ) |
18 |
|
relbrcnvg |
⊢ ( Rel ( 𝑌 𝑆 𝑋 ) → ( 𝐹 ◡ ( 𝑌 𝑆 𝑋 ) 𝐺 ↔ 𝐺 ( 𝑌 𝑆 𝑋 ) 𝐹 ) ) |
19 |
17 18
|
syl |
⊢ ( 𝜑 → ( 𝐹 ◡ ( 𝑌 𝑆 𝑋 ) 𝐺 ↔ 𝐺 ( 𝑌 𝑆 𝑋 ) 𝐹 ) ) |
20 |
19
|
anbi2d |
⊢ ( 𝜑 → ( ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ∧ 𝐹 ◡ ( 𝑌 𝑆 𝑋 ) 𝐺 ) ↔ ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ∧ 𝐺 ( 𝑌 𝑆 𝑋 ) 𝐹 ) ) ) |
21 |
10 20
|
bitrd |
⊢ ( 𝜑 → ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 ↔ ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ∧ 𝐺 ( 𝑌 𝑆 𝑋 ) 𝐹 ) ) ) |